AD-A167 217 DISTRIBUTED COMPUTING FOR SIGNAL PROCESSING: MODELING 172
OF RSYNCHRONO S PAR. . (U) PURDUE UNIY LRFIWETTE ll
0L OF ELECTRICAL ENGINEERING G L
UNCLASSIFIED TR-EE-O‘-ZS ARD-18790. 17-EL-APP-F 9/2

¥

- x

..y

701 Ty 5 R RPN K A B, o Y A = At g Vi e T A

T A L

MICROCOP

I
w12 g22
ol
£ 2o

s s

CHART

R R L R T T I IR Ty Yy T Ky ']
'&
K 7,

L it S

o
.‘v"‘h &"""'
! et

s

'] /X7‘ib./7,éL: Ph.D. Thesis by: Gie-Ming Linw o
Faculty Advisor: Philip H. Swain 8D
- APPENDIX F for ,

Distributed Computing for Signal A
Processing: Modeling of Asynchronous ,33\f
Parallel Computation; Final Report gﬁgb
for U.S. Army Research Office Tl
Contract No. DAAG29-82-K-0101 A

*Chapter 3 supported by this contract

Studies in
Parallel Image Processing

Gie-Ming Lin
Philip H. Swain

TR-EE 84-29
August 1984

b

% ELECTE NN
. RO

O APR 2 9 1986 NN

" R

X '

|

(=)

School of Electrical Engineering

Purdue University
West Lafayette, Indiana 47907

Approved for public release, distribution unlimited

Unclassified
St CURITY CLASSIFICATION OF THIS PAGE (When Duiﬂnnnd)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

. REPORT NUMBER

2. GOVY ACCESSION NO.| 3.

RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)

Studies in Parallel Image Processing

S. TYPE OF REPORT & PERIOD COVERED

Technical Report

6. PERFORMING ORG. REPORT NUMBER
TR-EE 84-29

7. AUTHOR(e)

Gie-Ming Lin, Philip H. Swain

8. CONTRACT OR GRANT NUMBER(s)
Contract nos.
F30602-83-K-0119,
DAAG29-82-K-0101

9 PERFORMING ORGANIZATION NAME AND ADODRESS
School of Electrical Engineering
Purdue University
West Lafayette, IN 47907

10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

. CONTROLLING OFFICE NAME AND ADDRESS
Rome Air Development Center, USAF;
Army Research Office.

12. REPORT DATE
August 1984
13. NUMBER OF PAGES

163

14. MONITORING AGENCY NAME & ADDRESS(!f ditterent irom Controiting Olfice)

18. SECURITY CLASS. (of thie report)
Unclassified

158, DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abatract entered In Block 20, If diflerent from Report)

N/A

18. SUPPLEMENTAAY NOTES

19. KEY WORDS (Continue on reveree side if necessary and identily by dlock number)

image processing, parallel processing,
sensing.

pattern classification, remote

20
!

~ The supervised relaxation operator combines the information from
multiple ancillary data sources with the information from multispectral
remote sensing image data and spatial context.

integrate information from the various

ABSTRACT (Continue on reverse side Il necesesry and identify by block number)

Iterative calculations
sources, reaching a balance in
The supervised relax-

consistency between these sources of information.
aticn operator is shown to produce substantial improvements in classifi-
cation accuracy compared to the accuracy produced by the conventional

DD ,’2%%s 1473

JAN 73

EDITION OF 1 NOV 65 1S OBSOLETE Unclassified

. SSECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

Unclassified

L3
o

o v v -
- A

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

Ao

™ maximum likelihood classifier using spectral data only. The convergence

property of the supervised relaxation algorithm is also described.

y [l WP hd

RS

Improvement in classification accuracy by means of supervised relaxation
comes at a high price in terms of computation. In order to overcome the
computation-intensive problem, a distributed/parallel implementation is
adopted to take advantage of a high degree of inherent parallelism in
the algorithm. yJo accomplish this, first, a graphical modeling and analysis
method is decribed for algorithms implemented using the SIMD mode of parallel-
ism. Second, thd comparison of execution times between SIMD and MIMD
modes is discussed, based on the analysis of implicit and explicit operations
embedded in an algdrithm. From the comparison it is shown that some
algorithms are suitable for MIMD mode of parallelism; some are more suited
to SIMD. Third, several performance measures for SIMD, functions of problem
size and system size, are discussed. Finally, two multistage interconnection
networks to support the distributed/parallel system are overviewed. Based
on these considerations, an optimal system configuration in terms of
execution time and system cost is proposed.

o
-,
I8

f
o
-

Martmccl Fian

AN

T ~

R I I B
AL I S S e T .
PR P Py T DR TP SOl I TR SPac . 1)

LI

STUDIES IN PARALLEL IMAGE PROCESSING

Gic-Ming Lin
Philip H. Swain

Purdue University

School of Electrical Ingineering T
West Lafayette, IN 47907 -

USA

Accesion For

NTIS CRA&I
DTIC TAB .
Ui.announced
TR-EE 8i-29 Justification

og

Dist ibution)

Availability Codes O
P TR :-_}__.-j}

August 1984

Avaii and | or
Special

This research was supported by the United States Air Force Command, Rome
Air Development Center, under contract no. F30602-83-K-0119, and by the
U.S. Army Research Office, Department of the Army, under contract no.
DAAG29-82-K-0101. Approved for public release, distribution unlimited.

..............................

TABLE OF CONTENTS

Page
CHAPTER 1 INTRODUCTION ..o e 1
CHAPTER 2 SUPERVISED RELAXATION OPERATOR ... 1
2.1 Derivation of the Supervised Relaxation Algorithm ... 14
2.1.1 Probabilistic Relaxation Operator ..o et 4
2.1.2 Compatibility Coeflicients as Conditional Probabilities............... 9
2.1.3 Problemu.. e 11
2.1.4 Approach: Supervised Relaxation Labeling.................oiii. 13
2.2 Method of the Integration of Image Data from Multiple Ancillary
DAt SOULCES covuvniiiietiiiiieeieeeeeiee e e et rtrtaeeeeeeeeaase sesbsae serabbencaeaeaeesecees 20
2.3 Convergence Property ... e 22
2.3.1 Introductionccoviieiiiiiiniieie, e 22
2.3.2 CONSISLENCY .oeoiiiiiiiit i e e e e e e 24
2.3.3 Geometrical Structure of Assignment Space.....ccooeeveeneiiieennncen. 29
2.3.4 Maximizing Average Local Consistency........cocccevniiiieneiiinnniionnen. 32
2.3.5 Relaxation Operator ..o e 38
2.3.6 Supervised Relaxation Operator ... 41
2.4 Simulation and Experimental Results.................ccocooiiiiii e 43
2.4.1 Results from the Maximum Likelihood Classification
Algorithm .o 45
2.4.2 Results from the Relaxation Operator.........cccccccevveeviiiiiiniiiieenens 45
2.4.3 Results from the Supervised Relaxation Operator with One
Ancillary Information Source..........c.oooeiiiiierieeiiiiiiiiieenine e 47
2.4.4 Results from the Supervised Relaxation Operator with Two
Ancillary Information Sources..............ooiviiieiiiiieeiciiieciincece e 49
2.5 Summary and Conclusions.........cooccvei i e 53

L]
%
A
[
CHAPTER 3 PARALLEL PROCESSING e et 53
~ 3.1 Modeling Image Classification by Means of S-Nets...o.oooooveiiin. 61
* 3.1.1 S-Net Structure: OVerVIeW. oot e, 62
N 3.1.2 Measures of Parallelism.........ooo e 66
™ 3.1.3 Stone's Vector Sum Example.. . 67
3.1.4 Modeling Complex Applications with S-Nets ... 72
3.1.5 Modeling Maximum Likelihood Classification with S-Nets.......... 73
3.1.6 Modeling a Pipeline Implementation of Maximum Likelihood
Classtieation . e e 85
3.2 SIMD vs. MIMD o e 91
2 3.2.1 The Flow Chart and the Algorithms of the Supervised
Relaxation Operator ... 92
- 3.2.2 Detailed Description of the Algorithm in Block C 96
- 3.2.3 Implicit Operations in the Algorithm............. 97
“ 3.2.4 Comparison Between SIMD and MIMD ..., 104
- 3.3 Alternative Performance Criteria............. 110
= 3.3.1 A Clustering Algorithm.........ccooiiiiiiii e 113
3.3.2 Farallel Implementation. ... 114
3.3.3 Performance AnalySiS..ooooooiiiiiiiiieiiiieeecce et 120
u 3.4 Parallel Architecture oot e 130
& 341 Hybrid NetWork ..ot e 132
X 3.4.2 Partitioning the C'ube Network into 2 MIMDs and 1 SIMD........ 135
. 3.4.3 Partitioning the ADM Network into 2 MIMDs and 1 SIMD........ 137
o 3.5 Summary and ConelusSIONS ..o e 142
CHAPTER 1 CONCLUSIONS AND SUGGESTIONS ... 147
] LIST OF REFERENCES....occccccccccmionicrerriossoricensssenaeseresesessesssssseecnnssses 151
APPENDIX ...cooooot oottt et s 154
y

..........

IR

-
b}

2

gL, '
. AP PR B
WP AN PP PSP SN et Sy

CHAPTER 1 - INTRODUCTION

The conventional classification of multispectral image data collected by
remote sensing devices such as the multispectral scanners aboard the Landsat
or Skylab sateilites has usually been performed such that each pixel is classified
by using spectral information independent of the neighboring pixels. There is
no provision for using the spatial information inherent in the data. In many
cases there are available other sources of data which an analyst can use as well
as spatial information to establish a context for deciding what a particular
pixel in the imagery might be. By utilizing this contextual information, it may
be possible to achieve an improvement in classification accuracy. For example,
in the case of forestry, various tree species are known to exhibit growth
patterns dependent upon topographic position. When this fact is used along
with spectral and spatial information, a classification with enhanced accuracy

can be obtained [1,2].

The supervised relaxation operator which combines information from
spectral, spatial, and ancillary data to classify multispectral image data is part
of the subject of this report. Relaxation operations are a class of iterative,
parallel techniques for using contextual information to reduce local ambiguities
[3]. Such techniques have been found to be useful in many applications such as
edge reinforcement [4], image noise reduction [5], histogram modification,

thinning, angle detection, template matching, and region labelling [6]. Its

£Te ey
AR
* .

i
waglh
-"-*.‘-*i‘ :
Rt '

LA

'l%‘

e
LA

o, % 'y
» A4
LA

A N]
LTty
A

v % O

- TTRE
P
. N
B
.
v
-
RS
15
e

Y.
‘-'/1'4

o s TR e TSR e Te W W W W TR e T T TR T TR W N T ST T ST T TR T W v v e
- B — w w w = - -

o

convergence, the derivation of compatibility coellicients, and the theoretical
foundations of relaxation labeling processes have been deseribed in [7,8,9,10,11].
A modification to existing probabilistic relaxation pracesses to allow the
information contained in the initial labels to exert an influence on the direction
of relaxation throughout the process has been described in [12). This modified
relaxation method, called supervised relaxation labeling, has been extended to
incorporate one ancillary information source into the results of an existing
classification {2]. In this thesis, a method for integrating image data from
multiple ancillary data sources is deseribed in Chapter 2. Based on the
approach in [13], the convergence property of the supervised relaxation
operator is presented. The supervised relaxation operator is generalized and
demonstrated experimentally to combine information from spatial and multiple
ancillary data sources with the speetral information for the classification of

multispectral imagery with multiple classes.

Due to the high computational complexity of such operations and the
availability of low cost microprocessors, architectures involving multiple
processors are very attractive. Several parallel organizations have been
proposed, principally SIMD and MIMD architectures. In Chapter 3 of this
report we focus our attention on performance measures for parallel processors
and interconnection networks for multiprocessor systems. Section 3.1 will
present the application of S-Nets {1-4,15] to modeling the maximum likelihood
algorithm in SIMD and pipeline implementations. Several aiternative
performance measures for the parallelism inherent in the algorithm are also
deseribed. The algorithm execution times derived based on the analysis of
imphicit and explieit operations i the algorithm for SIMD and MIMD modes of

parallelism are compared and discussed in Section 32, In Section 3.3, the

PV YA SR YL Y

v
L A3

N
v’ v SN

(.:D’.,’_., .. RIS
o .,‘

- L g
AH0?

%
Oy
o

Sy

determination of the optimal number of processing elements in terms of

execution time and system cost for a given image size based on the measures of
evaluating the performance of an algorithm is discussed. Finally, Section 3.4
describes how two multistage networks {16,17,18,19], the cube network and
ADM network, can be configured to support an implementation which utilizes

both SIMD and MIMD processing components.

LIS e o

—TTE T I

.

)
2
E CHAPTER 2 - SUPERVISED RELAXATION OPERATOR
EZ
: In this chapter. Section 2.1 contains a step-by-step deseription of the
i supervised relaxation operator. In Section 2.2, a method for the integration of
3 image data from multiple auxiliary data sources will be given. Section 2.3

discusses the convergence property of the supervised relaxation algorithm.
Finally, Section 2.4 presents experimental results on a 182-by-182 pixel

Landsat image.

2.1 Derivation of the Supervised Relaxation Algorithm

In this section, the derivation of the supervised relaxation operator from

the original relaxation operator [3} is described step by step, and an heurnstic

interpretation of the supervised relaxation operator is given.

2.1.1 Probabilistic Relaxation Operator

Most classifiers used with remote sensing data are pixel-specific. Each
pixel is classified by using spectral information independent of the classification N

of the neighboring pixels. No spatial or contextual information is used. LN
Relaxation labeling processes are a class of iterative, parallel techniques
for using contextual information to disambiguate probabilistic labelings of

objects [3]. They make use of two different sources of information, a priori

neighborhood madels and initial observations, which interact to produce the

.‘{-‘-.

M I NI

final labelings. The relaxation processes involve a set of objects, A = |
ay, 29, ..., 4,}. and the relationship of each object to its neighbors. Attached to
cach of the objects is a set of labels, A = {X\| Xq. ..., XA, }, where each label
indicates a possible interpretative assertion about that object; for example, the
objects might be image pixels and the labels might be spectral class names.
The relaxation algorithm attempts to use constraint or compatibility
relationships defined over pairs of labels, possible interpretations, attached to
current and neighboring objects in order to eliminate inconsistent combinations
of labels. (“Current” refers to an object which, at the moment, is the focus of

attention.)

A measure of likelihood or confidence is associated with each of the
possible labels attached to objects. This measure is denoted by Py(X). These

likelihoods satisfy the condition

VPN =1, for all 3¢ A, 0 < Pi(A) < 1.
AeA

In this probabilistic model, the likelihoods estimated for an object’s labels
are updated on the basis of the likelihoods distributed among the labels of the
neighboring objects. These likelihoods interact through a set of compatibility
cocflicients that are defined for each pair of labels on current and neighboring
objects. The compatibility coeflicients are determined a priori based on some
foreknowledge of or on a “typical” model for the image to be classified. More
specifically, for a given objeet a;, the likelihood Pi(X) of a given label X should
inerease if the neighboring objects” labels with high likelihoods are highly
compatible with X at a,. Conversely. P’ (A} should decrease if neighboring high-
likelihood labels are incompatible with X at a,. On the other hand, neighboring

labels with low likelihoods should have little influence on Py(X\) regardless of

Ala at i A amis L 0 a sre Ly

AR ol ST

r Ll ’
s'.‘n'-'-:i .
A A A .

.'r’.'."v 'v”c 1 ". i

4

)
NS

5
4, %
.

:"'qa
A A

¢
4

o
.

&
[
.
»
-

. N
"_. -
P

«

[
A
"y

h
"
.

7

r

T yr—

their compaiibility with it. Let X" be a label for a neighboring object and X for

the current object. These characteristics can be summarized in tabular form as

follows:

Compatibility of A’ with X
High Low

Likelihood of X' High + -

l.ow 0 0

where + means that Py\) should increase, — means that it should deerease,
and 0 means that it should remain relatively unchanged. The coeflicient
qij(k,)\') is a measure of the compatibility between label X on current object a,
and label A\ on neighboring object a;. These compatibility coefficients are
defined over the range [-1, 1. The aim is that the 4's should behave as

follows:

Yi(AAT) > 0, 0f A on a; frequently co-occurs with A on aj.

. . ’
= 1, if X on a; always co-occurs with X" on a;.

. . [
< 0, if X on a; rarely co-occurs with A’ on a;.

. . ’
=L if X on a; never co-occurs with X on a;.

. . L
= 0,1f X on a; occurs independently of X on a.

With these compatibilities, the contextual kaowledge is incorporated into the
probabilistic relaxation operator.
The mmtial label likelthoods are provided from a classification of

multispectral Landsat data. X multispectral seanner (MSS) gathers radiance

Ay

Yauns

>
y
.
DAL
A
»

*
v

TN

"

A
e |

v
¢

; 7

-

A data in various sections of the electromaguetic spectrum (wavelength bands).

X For example, the Landsat MSS has four wavelength bands in the visible and

<
':.': near infrared spectrum. Such remotely sensed data have been collected and
e stored in digital format.
‘: The first step in multispectral classification begins with the selection of an

MSS data set which has suflicient quality so that the classes of interest on the

3 land covered can be identified with the desired accuracy. After choosing the

- best available data set for analysis, the study area within the data is located
‘ and the reference data (such as aerial photography, maps, etc.) are correlated

2 with the multispectral scanner data. These reference data provide the key to

relating successfully the spectral responses in the data to the cover types on the

g ground.

‘ The second step is the selection of the training samples. A common
procedure for selecting the training areas is to use the available reference data
to identify areas that contain the information classes of interest. The images of

B these areas are then identified in the multispectral scanner data. These

training samples are used to determine parameters for the pattern recognition

algorithms, effectively “training”™ the computer 1o recognize the classes of

: interest. Later when the classification operation is carried out by the pattern

< recognition algorithm, each data point to be classified is compared with the

training samples for each class, and the pixel is assigned to the class it

] resembles most closely.
- S
9 The third step is to use these training samples 1o define training classes, ;\
_ The training classes are often characterized in terms of the mean vectors and }t:.
) o

4
Moo

covariance matrices by the clustering algorithm. Clustering may be used to

. identify natural spectral groupings of pixels in the training samples. These

.............

[}

natural groupings, called “spectral classes,” are used as candidate training
classes. To be sure of the reliability in identifying the information class of each
cluster class obtained, all available reference data are used. This step is the

most important in ensuring that the classifier is correctly trained.

The final step is classification using a maximum likelihood classification
algorithm. The set of discriminant functions for the maximum likelibood
classification rule, usually specified in terms of mean vectors and covariance
matrices of classes, is derived from the statistical decision theory so as to
minimize the probability of making an erroneous classification. When the data
values of a pixel are substituted into all of the functions, the pixel is assigned
to the class which produces the largest value.

The initial likelihoods of the labelings for each pixel are provided by the
values of the discriminant functions of the classification algorithm. Each

probability is then updated by a rule of the form:

PO 1+ of)

pi(kﬂ)()\) = (2.1.1)
A RAUPSRIBESRTLDN)
AeA
where
G} = Vdy VAN PN (2.1.2)
jed N A

where k is the iteration of the relaxation process and *(\) denotes the kth
estimate of the neighborhood contribution.) defines the neighborhood about

the current pixel being considered. The coeflicients dy; represent the possible

weighting constants (which satisfy N = 1) over the neighboring objects aj.
i

These coeflicients sure that ¢ is in the range [-1,1] and allow different

PRERY

o . - - . K R4 . Tt . “'.-'-'-'."-'u - - . . - - AT Y .t -
(PRI S S AR . LSS ESEATAC L SR LTI L VTLILrLT TN FL rC VL ra Vs reE vy s

.-

ot L"l"; \.-l-“.-g

RSN i S Bt sttt Skt it Suts i o Abd 400 Sk iAol v e A B e A oo o
R A AR A R i AL AR A AR A S M R S e A i b e e

4.

sl e,
Ay

.8

neighbors in J to have different degrees of influence in the neighborhood
contribution. Indeed, if l’j(k)(k') is high, and 'Vij()")") IS very positive or very

. ’ . ., - -
negative, then the label A at a; makes a substantial positive or negative

contribution to q!¥)(\); whilc if l’j“‘)()\') is low, A" at a; makes relatively little
contribution to q{*)\) regardless of the value of ’7u()\.)\'). Therefore, a very
positive or very negative contribution to q{k) contributes an increase or
decrease to PI(A) since PM(X) is obtained by multiplying P& by (1 + ¢¥),
whereas a sinall contribution to qi(k) contributes little change to l’i“‘H’. Here,

the denominator in Equation (2.1.1) guarantees that all the P's sum to L

Moreover, they remain nonnegative, since ¢{* is in the range [-1,1) provided

that 3 dy; =1, s0 1 + q{¥) is nonnegative.
i

- t .
AL

L
'

This rule is used to update the likelihood of each label on each object in

Yy

parallel, and is then iterated until no further changes occur. At this point, we
say that the final labelings reach a balance in consisteney between spectral and

spatial (or contextual) data sources of information.

2.1.2 Compatibility Coeflicients as Conditional Probabilities

The original iterative rule of Equation (2.1.1) uses a priori knowledge
embedded in the dij and 4, functions to disambiguate the initial likelihoods. In
the original design [3], the "Iij(>‘-'\") coellictents were regarded as representing
correlation functions. This association turns out to be in general inadequate.
The representation of conditional likelihoods seems to be appropriate. Such
conditional measures are in the form of “given X on a;, how compatible is this

with X on a,?". Now, we shall transform the updating rule of Equation (2.1.1)

into one involving conditional likelihoods. The range of values for -

compatibilities, [-1,1], must be scaled into [0,1]. The simplest transformation

is:

, W)+ 1
Py(A[X\) = l’-(—aL—— (2.1.3)

where Pijp‘l ') is to be read as the conditional probability that a; has label
given a; has \'. a is a sunitable constant. Substituting Equation (2.1.3) into

Equation (2.1.1) gives:

PRV + Vg Vlaly(M X)) = 1Py

] A

P+ =

CPHO{ L+ Sy aly M N) - 1PN)
) i N

PRI+ VdValPy3 2P - 1y
i

NP+ VAVl NP - 1
S LR

} N

PN dy Y aPy(h| N PN)

— J A
Y PEO A VaPy A AP
A j A

PR Sy PN

1j et
— J A

_:p_l(k)()‘,{ L‘dijxpij('\i \)Pj(k)()‘,)y
by] Iy

PMNQMN)

= (2.1.4)
A AL PN OTLPY

—)
A

T Y T L W WYy TV T " W T Wy T o

5SS

W

1 T

"_::"_:jf-\.

S

e e

R N ’ RPN NS
Q) =)jdu- NP IO (2.1.5) oy,

It A A

AN
-.:{:
This is an analogous form of the updating rule of Equation (2.1.1) with -;3::',*..
Y

\

compatibility coeflicients replaced by conditional likelihoods which satisfy

VR M= L
AeA

2.1.3 Problem

The problem we want to deal with here is how to incorporate information
from multiple ancillary data sources into the results of an existing classification
of remotely sensed data. Conventional elassifieation of cover types in remotely
sensed data, based only upon spectral information, might not be enough. In
many cases, there are other sources of practical data available which can be
used along with the spectral information to improve the classification. For
example, various tree species are known to exhibit growth patterns dependent
upon topographic position, as shown in Fig. 2.1.4, so that tree species or other
forest classifications could be improved by combining spectral data with
elevation, slope, and other topographically related information. As shown in
Fig. 2.1.1, the current pixel with remotely sensed data [y, Xa X3, X, gathered
from four wavelength bands from visible and near infrared spectrum has other
ancillary data y,, ya, y3 obtained from information of clevation. slope and
aspeet. The information from ancillary data sources is assumed to be available
in the form of a set of hkelihoods. The procedures proposed below are post-
classification techniques, in that the influence of the available ancillary data

can be imposed on an existing, spectrally determined, classification result.

o et e e e R U SR R
P A L N L A

POV PRV Y ‘-‘(:;-‘l’f‘I‘-l Dad R i - e

T R B Sy
RAPLPE P R PR ALY

|
VA
7.
7L
71,
7T,
7.

]

vy

Regist ered Data Planes

Dindainddda d a2t 2°

Fig. 2.1.1. Use of Ancillary Data [2]

L o b adNa il o e st et Kt e oA g ol ol

-
A
s

TS

LA P

Spectral Data
collected from
four wavelength

13

Sate! Dy DN

.
L]

2.1.4 Approach: Supervised Relaxation Labeling

a2

Phlits

A method of supervised relaxation labeling [12.2] has been proposed for

¥ incorporating one source of ancillary information into a classification in a

-t

" I —_— . .
quantitative manner. This method was previously applied only to a two-class

{spruce-fir vs. others) problem. The supervised relaxation labeling can develop
consistency between spectral, spatial, and multiple ancillary data sources of
information for problems with multiple classes. The classification used for this
purpose was produced from nmltispectral Skylab imagery. For example,
distribution of the classes of tree species with respeet to the elevation in one
2 specific area is shown in Fig. 2,03 For simplicity, the area is assumed to be
labeled into three classes. Spruce Fir, Douglas & White Fir, and Ponderosa
Pine. But the method can be applied in a similar way to problems involving

more classes. In this area, there are also data describing the elevation, slope,

and aspect preferences of the various tree species, along with digitized terrain

v
PR

maps of clevation, slope, and aspeet. For the present study, elevation was

chosen as the most important ancillary data variable for improving

classification accuracy over an cxisting classification obtained from spectral

v
R

data alone. An elevation map of the area is shown in Fig. 2.1.2 [2] and the

TR

distributions of three classes {assume their labels are Xj, X, and \3) with

i

respect to elevation are shown in Fig. 2.1.3. Given the elevation of the current
pixel known from Fig 2.1.2. the probability of finding classes labeled Xy, X,
and Ay can be seen in Fig. 2.1.3. Let the likelihoods be x, ¥, and z. Then a set
of relative likelihoods (corresponding to each pixel in an image) for each of the

labels for the current pixel a; is as follows:

.‘_.,.,."..,'..._",’_"‘",' .
P A R Wiy Wy T Ty 0, W WG WRE I |

AR A AT A A A A A Al A b/l

i MR IR H AT I S S

(333333481
(34

i

Nt & & © &
s

S seses 35573

sans -aya,zznx-
~anna~ae’sn-38Eay
855993353549

NI S T 15:5\
2‘2""“'”’2i "Z"Z‘v‘
‘-.ssszshu 3528998,
€934588644 00agy508451y
I L T e SRR L Y T Y S

eyt

i

Tty
4008)8

k3 S
R
a3ddedy
T ITITTTYS :33} 3
e .

Baesy §
P Rt >
4 ‘/ LIS
PN

-

S A e e
<
f.3=
A
oe

1

jisevivrasvissns saonesesns el

e,
e
'
S
[33

o

N vy TRy
[3 [23 ks Anresense? TTasananssnobanas sae
< 22 RETYYS

Annsonte.

- .
ASaeNRARAN

8959444

N 5:‘5
4 5'\\!\\22%

9554 5383588858

L34 s 3 \\s*;::#::\;\i s\\\:\qs\:
9 ; > l» lRIZZs‘sii\Zss
SA553588058555599455%88 3
N2 EN zz 999095945
s‘zs’zZEBZ ﬁzs an
Y 294559

e
+53%
18
124

Fig. 2.1.2. Digitized Terrain Map [2]

15

DSty 7 pr i

hhg

2L \
T o 2
e 9 100+

"523 \
T L R0

S < A3

= -

_ i

o =

Z 2 40

< &

o © 204

)
2000 2500 3000 3500 4000

Elevation (meters)

Fig. 2.1.3. Distribution Functions Tlustrating the Relative Likelihood of
Finding Three Classes at Varions Altitudes [1)

b i A A IS At A A AR AY '.'-'-'-l-!\‘! s.! b APSA S e Ak bk A A A IOR 8 oo i pre sa st et

16

3600 A - 12000

2 SUBALPINE
& % FIR
ENGELMANN} 77 2

SPRUCE
| X L 11000
L 10000
2400 \ 4 -

. \ PINYON

’ OAX / 7 PINE
2100 \ < 4— 7000
1800 ('-*-‘F'* \ —{ "% 6000
ROCKY MTND
JUNIPER

d

3300

3000
LIMBER

PINE ASPEN

2700

- 9000

% - 8000

X

ELEVATION (METERS)
N

MW
N

FEET

1500
KEY

OISTRIBUTION ON SOUTH
FACING SLOPE X\

‘ DISTRIBUTION ON NORTH
FREZQUENCY OF OCCURANCE & FACING SLOPE
AS A FUNCTION OF ELEVATION

Fig. 2.1.4. Forest Species Distribution as a Function of Elevation and Aspect
in the San Juan Mountains [1)

LR B I TR I S S S P Y . . e e e e
“ B o P PR W . .o . . . - o ERR .
' ~ B et et A e m e Mo e o . et - .-
- - Nt e e . RN . . - . - - L e PR S R A
‘. T At e, e et e . L .
G] Pt et ety e W T At e -

. -] .’
LIRS . -~ .

A R L AR LIRS] P S PSS S S - . . e Te e S e LR AL IR R j
DA A TSR I I Y I R PRI, T, A P R T SR T OO o rtansioden e AR I TR SO P RERADPL . TR OME U S PGS R PR

p
0
-,
.
v
K
r
'
4
B

P
.

17

M) = T,

SNARE AAARASLW N TN

LA
<

»

¢i(>‘2):x+y+z

Y

r zZ
A {\)) = ———
r W) =T
~
'y

.

where

»

e

Vo) =1
J

(N ien Tom s 4
o, .

These likelihoods have been derived from the ancillary data (i.e., elevation)
apart from the spectral data used in determining the Py(A)'s in Equation (2.1.1)
and Equation (2.1.4).

If there are multiple sources of ancillary data available, how can we
incorporate these multiple ancillary sources into the result of an existing
classification? Let us denote the set of likelihoods derived from the first
ancillary data source for pixel a; as &) = [¢(\), &' (\2), 61(A3)]T and that
derived from the second ancillary data source for pixel a; as
&7 = [oN) 62(Na), 63(X3)]T. Then the final set of relative strengths (that
deseribe the relative likelihood of the labels for the pixel a;) derived from these
two ancillary data sources is denoted as ¢, = [éi(kl),tbi()\g),g‘)i()\a)]T where @,

has the form of an elementwise product of two vectors ®! and @2

e

- ',\“'- TS .

DN aE S T e .

:.,:‘- .f.f.q'*q'\-n'\ LRl e PO e R T O e S PRI R
aflataCatnialn RN R K R GTR, T S R G A S S P RS, . T PR R v

l.. -' -
C T e . Te e e e e
PRV S PV S P SISO |

Tt ot
o

IR

éil(M)(’ig()‘l)
ol (Mo (M) 8 (M8 ho) +6113pi2(X5) N
éi(}) 1 2 oS
o = lop| = &, (X2)07(Na) L RGN
[A2 - . 2 A o R] ..:-:.‘i.:-‘
o(Ms) oA o, (>‘|)+0i'(/\2'¢i"(>‘2) +6;'(A3)07(As) RO
(,’J(X:‘)(:)i-(Xx) ; _;.’-;‘;.
S (MO)+ 0 (Na)of(xa) + 0] I3pi21 3 o

where
3
hl p—
Vi) =1
=1 .
The final set of relative strengths has been normalized to make the sum of all SRR

the terms equal 1. Of course, this approach can be generalized to deal with
problems with multiple-class, multiple-ancillary data sources. Therefore, the L

modified supervised relaxation procedure is adopted to incorporate the ¢;(X)'s RSO
and thus allows multiple sources of ancillary data to bias the outcome of the
set of likelihoods for each pixel in the image at cach iteration. Il the current
favored label on the pixel is also strongly supported by the aneillary data [as
expressed by o(X)]. then its likelihood is strengthened prior to moving to the
next iteration. Conversely, if the current favored label s not strongly

supported by the ancillary data, then its probability is weakened before

proceeding. From the form of &;, it is easy to realize the reason why an
elementwise produet rule is chosen to combine the sets of likelihoods derived
from multiple ancillary sources. Namely, any label (or class name) with a very ';"‘-";4:‘
small value of probability derived from ancillary data source will foree that
label to have only very limited effeets on the next estimate for the current pinel
a; even though other ancillary sources have evidenee to support this label. It

further prevents the additive accumulation of the small responses from

19

ancillary data sources due to some Inaccurate estimations. The strategy of
modified supervised relaxation labeling can be implemented quantitatively by

defining
pilh) = 1+ NN = Nl (2.1.6)

where

N is the total number of possible labels (e, classes)

8 is a weighting constant to be determined
Through the parameter 4. the present method allows the relative influence of
spectral and ancillary data sources to be varied. A large 3 reflects a high
degree of confidence in the accuracy of ancillary data sources. At the K+1 th

iteration, Equation (2.1.6) is used to modify the label weights according to

PN

PN =

_\;Pi(k+ ”(M'.'i(x)
At A

where the denominator is a normalizing factor. 10 .30 = 0, then (N) =1 and
l’i(k“’()\P :l'i(k“)()\), which means the ancillary data have no influence at
all. If the ancillary data sources have provided no information {or no
preference for any label for the pixel a), then ¢(A) = N ! for AeA. This leads
to PEFNOOT = PFYUN) e the ancillary data sources have no influence on
the progress of the relaxation.

Substituting Equation (2 1.1) into Fguaton (2.0.7) it hecomes

R (h
piyt o IR

- (2.1.8)
M PMOQRIN
NeA

where

LG
oa
e

QRN = QIFIN) = vyX) (2.1.9)

Yoo 4

Q-l(){)(k) is the original neighborhood contribution of Equation (2.1.5) augmented

;}
4
(3

Lo 8)
N

by Equation (2.1.6).

(7
R
“

"l

LA

The modified supervised relaxation labeling starts with PIO(x). X ¢ A

where Pi‘o)(\) is the initial probability. In principle, these likelihoods are
available in the penultimate step of the maximum likelihood classification

obtained using spectral data only (i.c., just prior to the pixel being labeled

according to the largest of those likelihoods).

The required context conditional likelihoods Pij(k{ \')'s are computed from
the original classification. A more precise means for obtaining the
compatibilities would be to estimate them from some other source of data

known to be correct.

The final labeling achieved will represent a balance in consisteney between

the spectral information implicit in the initial likelihoods PO{x). AcA. ancillary

information embedded in the ¢;(A)'s, and spatial context data incorporated in

the set of I’ij()\l A)'s. w

2.2 Method of the Integration of I'mage Data from

Multiple Ancillary Data Sources
In Section 2.1.4, an elementwise product of two vectors &' and &2 which
are derived from two ancillary data sources for a pixel a; is used to produce the
final set of relative strengths. This section will provide a justification for using L;‘::_
the clementwise product of vectors to integrate ancillary information from

multiple sources.

IPCPAPIPCROPIP U WY, P R VR R U PR WALy

¢i(};), in Section 2.1.4, is actually the probability of finding class X; if the
elevation value at pixel a; is given. Indeed, ¢(X;) can be expressed as P()\j] x)
in which index 1 is omitted and x is the elevation value: That is, given the
elevation value x, the probability of finding elass X; is l’()\j| x). Similarly, given
another value y such as slope or aspect angle. another probability l’(xj‘ y) can
be found. Then, the multiplication of these two values, l‘()xj] x)[‘(kj] v). can be
expressed as follows, if it is assumed that P(x)P(y)=P(x,y) and
P(x|)\j)P(y}) :P(x,y] \j):

P(x) P(y)

P(| 5 IPIN | ¥)

l’(‘-."' >\j)|)(>\j")(>\j)
P(x.y)

l)(Y.y,)\J)l)(kJ)
Pix,y)

P x.¥IP(N)

_ Py
B N

where, in the last step, P(\;) = -1-11— and N is the total number of classes. This

means that each class is assumed to be equally likely. After normalization as
in Section 2.1.4, the constant term, N, in the above equation will be eliminated.
Then, the probability of finding class A; given two ancillary data observations x
and y can be derived from the probability of finding class X; given x and the
probability of finding class A given y. If the independence assumptions are not

valid, the derivation in Equation {2.2.1) is not valid either. In this case,

P();] x.y) can be expressed as

I’(x.yl >\,')I’(>\,')

P(x,y)

l)(le ,\'..\') =

(2.2.2)

The joint distributions, l’(.\',yl Aj) must be estimated first through the training

samples, and then the probability, l’(Xj[x,v}), can be calculated.

Given more than two independent ancillary data sources, the probability
of finding class Xj can be derived in exactly the same way as in Equation (2.2.1)
except that the constant term will be different. Again, the constant term will

be eliminated after normalization.

2.3 Convergence Property
Section 2.3.6 will discuss the convergence property of the supervised
relaxation operator. The preceding material will describe some theoretical
background. most closely following [13], step by step in order to reach the final

conclusion in the last Section 2.3.6.

2.3.1 Introduction
In a relaxation operator, there are:
(I) a set of objects;
(2) aset of labels for each object;
(3) a neighbor relation over the objects; and
(4) a constraint relation over labels at pairs of neighboring objects

We shall denote the objects by the variable i, ic A, which can take on integer
values between 1 and n (the number of objects), the set of labels attached to

node i by A;, and the individual label (clements of A} by the variable X.

EAALSES

RN I £ oy il
Y e

PR

1 e

For simplicity, we assume that the number of labels at each node is m,

independent of i, so that the variable X takes on integer values from 1 to m.

Constraints are only defined over neighboring nodes. The constraints
allow for labels to express a preference or relative dislike for other labels at
neighboring nodes by use of weighted values representing relative preferences.
That is, the constraints are generalized to real-valued compatibility function
;N N') signifying the relative support for label A at objeet i that arises from
label N at object j. This support can be either positive or negative.
Generally, positive values indicate that labels form a locally consistent pair,
whereas a negative value indicates an implied inconsistency. When there is no

interaction between labels, or when i and j are not neighbors, ~;(3\\") is zero.

Having given the compatibility weights, continuous relaxation also uses
weights for label assignments. We denote the weight with which label X is

assigned to node i by Py(\), and will require that

0< P\ <1, alli\

m
VPN =1, alli =100
A=

The relaxation process iteratively updates the weighted label assignments to be
more consistent with neighboring labels, so that the weights designate a unique
label at each node. Some have defined consistency as the stopping points of a

standard relaxation labeling algorithm.

2.3.2 Consistency

An unambiguous labeling assignment is a mapping from the set of objects
into the set of all labels, so that cach object is associated with exactly one

label.

_ |1 if object i maps to label A
Pi(d) = 0 if object i does not map to X

Note that for each object i,

d

Y ED
A=1

The variables Py(1), . . . ,P(m) can be viewed as composing an m-vector l—’i,
and the concatenation of the vectors P,, P, . . ., P, can be viewed as forming
an assignment vector P¢ R"™. The space of unambiguous labelings is defined
by
K'={PcR"™ P=(P,,... P,
i_’i = (Pl(l), e ,Pl(m)) ¢ R™

P{A\) =0or1, alli, \;

P(A) =1 fori=1,.,n}.
1

w13

A

A weighted labeling assignment can be defined by replacing the condition
Pi(X) =0 or 1 by the condition 0 <P(X\) <1 for all i and X. The space of

weighted laleling assignments is defined by

R
P e’
alala’

‘
LN

P B |

Y et T T Y
. E] e S
B Sl
. LRI _'- .'~ "
DY SRR A A

PR S N

-

! 4
X
rr
*, [SLALRE

.
a
.
L)

s
.

. For
AL

L]
a

.................................
-

[4
2.
r

lLE
4 TPV
y_*
?
A

- 25

S

‘

: K = {[—) € an: F = (ﬁl) LA 1[‘3n);

:-; P, = (P(1),...P{m)) ¢ R™;

x.

' 0 < Pi(\) < 1foralli)

VP =1 fori=1,.,n)

L =1

We note that K is simply the convex hull of K*. For example,

1-5 = (]'51, l‘32)

e 3 3
0 = Y Pyle)Py{1)-(E,,&) + 3 Pi(e)P22)(T,,8) + 30,&)
:_ ©=1 =1 e, :-i::
8 = PUIPy(1) *(7,.8) + P(20Py(1) * (€,8) + Py(3IPo1) " (5.8 R
+ Py(1)Py(2) *(€,,8) + P1(2)Py(2) (82.T2) + Py(3)P(2) (23,8 f
S
+ P1)Py3)* (51,5) + Py(2IP2l3) - (E73) + Pi(3IPA(3)* (€3.7) o
panean] e +e@+e el ﬁ‘_
> = ||Py(2)Po(1}], 0 S
. Py3)Py(1) 0 e
. Py(1)P(2) 0
2 + [P 2P} (P +HP2) + P GBNPL(2) TN
* P (3)Ps(2) 0 'S";\
. Sl

d \..‘).:. .

i 26

: 4
: Y

‘.
»
N P (1)P5(3) 0 N
+ ||Pi(2)Po(3)] . 0

y P1(3)Py(3) (P +P(2)+P(3))Po(3)

. Py(1) Po(1)

_ = [Py2)| . |Po(2)
. Py(3) Py(3)

? We can generalize this as follows: let & denote the standard unit m-vector with

8 a 1 in the kth component. Then any labeling assignment P in K can be
- expressed by

- m m m
P=N NV 0N Pley)Poleg) - Prley (€0, - - - T).

:: ;=1 e;=1 e,=1

" Since each nm-vector (€,....,%,) is in K* the above sum can be interpreted

: as a convex combination of the clements of K*. Note that the sum over all of

3 the coeflicients is 1 i.e.,

. n m

» ._: e __: I)l((‘l) o I,n((‘n) =1

e, =1 ep=1

Remember that no restrictions are placed on the magnitudes of the

Al

compatibilities, ’Yij(>">")’s, and these will be represented by a matrix of real

numbers - the compatibility matrix.

Definition 2.3.1: Let a matrix of compatibility and a labeling assignment

(unambiguous or not) be given. We define the support for label X at object i

for the assignment P by

o
C2
o

. -
LIt I

. R R
Lt . - T R N T T AT

. - Y LI Tatet N, - - - - ‘..-.'.\ - 0
3 o L o, - < g PR VAR PP YRR, W W VW VR VAL R N

_— n m
SiN) = SinPY = NN NN PN
i

J=1 M=

More generally, the support values S;(\) combine to give a support vector S

that is a function of P, i.e. § =S(P).

Definition 2.3.2 (Define consistency for unambiguous labelings):

L ——

Let PcK* be an unambiguous labeling. Suppose that X,\, are the
labels which are assigned to objects 1..n by the labeling P. That is,
F:(Exl,ﬁh,&). The unambiguous labeling P is consistent (in K°)
providing.

Si(Ag: P) > SN P), 1<Xx<m

SN D) > SNP)L 1€ A <m

At a consistent unambiguous labeling, the support. av ecach objeet, for the
assigned label is the maximum support at that object. The condition for

consistency in K* can be restated as follows:

VPSP > Y vISOGP) i = Fen
A=l A=l

for all unambiguous labelings v ¢« K*.

Delinition 2.3 3 (Conststency for weighted labeling assignments):

Let PcK be a weighted labeling assignment. The P is consistent (in K)

providing

¥

R PCL PG SRR
e A e

g S - S miuts ot e 2 " Eadian ’y e
IS AAES g DAL AR BGEEARACARAR AL AR DRI ey S e A A SRS B L BB B A S a4 & o s aus e 4 W e S0 e CRESE OB

m — m —
VPSP > N vINSAP), i =10
A=l A=}

for all labelings Ve K.

Definition 2.3.4 (Strictly consistent):

Let Pe K. Then P is strictly consistent providing

m — m _
YV POSINP) > Y viS(nP), i =1,
A=1 o=1

for all labeling assignments Ve K, v /I’

Theorem 2.3.1: A labeling P¢K is consistent if and only if PcK:

E "nj()\,)\')PJ(X')[Vl(k"Pl(X)] S 0 for all v K.
1,2\

Proof: See [13].

Average local consisteney is defined as:

A(P) = V) VI PONSIN
i=1)

The individual components S(\) depend on P which varies during the
relaxation process, whereas consistency occurs when NV vi(N)S;(NP) s
maximized by ¥=P. That is the S(\) should be fixed during the

maximization.

Remember that the labeling space K is the convex hull of the

A &, R
v, 8 ‘el i

unambiguous labeling assignment space K*.

PP
L
M)
»

I

v s

-,

BB T TN T - "e e e 8 W & e - - -

(]

- . W
]
s

e

o’
-

LAAYS AR Y S,

e THERTa"e"a"s s v CER .

ToEm A% % N T

Padi N A uhie i arnn di < i B Al . et

-

\:b

7,

LI

i >
2 '&

[T,

[8

]
X

\r‘

"»

’

L4

L4

o

2.3.3 Geometrical Structure of Assignment Space
A simple example: there are two objeets with three possible labels for cach

object. A labeling assignment consists of six nonnegative numbers:

P = (P, P;) = (P,(1),P(2),P(3); Po{1),P5(2).P4(3)) satisfying

3
V) =1 fori =12
=1

The locus of possible subvectors P, in R is shown in Fig. 2.3.1. The veetor
P =(P,Ps) can be regarded as two points, each lying in a copy of the
likelihood space shown in Fig. 2.3.1. Thus K can be identified with the set of
all pairs of points in two copies of the triangular space. This can be
generalized to the case with n objects each with m labels. Then K is more
complicated. A weighted labeling assignment is a point in the assignment
space K, and K is in turn the convex hull of the set of unambignous labeling
assignments K*. An unambiguous assignment is composed of points which lie
at vertices of their respective surfaces,

The tangent space is a surface which when placed ai the given point lies
“tangent™ to the entire surface. If I’ is a labeling assignment in K, and ¥ is
any other assignment in K, the difference veetor d =v-1 is shown in Fig.
2.3.2. As ¥V roams aronnd K. the set of all possible tangent directions at P is

swept out. The set of all tangent vectors at I is therefore given by
Tp = {d:d =a(v-P), VK, a>0}
Any tangent vector is composed of n subvectors so that d=(d,.d,) and

VT A = N asv A= PN = as(1=1) =0,
A=l A=

SeTe e e T e e
PR WP W RPN PR WLy

Rt s S AR TR A A S Vo

30 b

Pi1)
4

TR TN . e ¥ v e S

o el

LI

| (1,0,0)

s

(0,1,0) — bi2)

o v e - -
DAY

Probability space is the portion of an ' K
; (0,0,1) affine subspace in the positive quadrant e

[NENERER
-
’

E r*

Pi(3)

AR AR

c U e

I'ig. 2.3.1. Likelihood Space

C T .Ta e as CTEER e

- R . e -l T et e e m e el . .
LR/ R P T P A A A P A A AT
N - LS Y T S WSS I W VPO N . R L P e N

R R R A o g e o > AS ' e it i 2 2 SRR Bl e a0 T A o o S S -
R T S P

T o T e T T T M M PN Dt A &

| G

31

s
-t

o

e 2
-

i
l"u"

P
A ,

EA

@ .

’,
'l‘v"'
RANRRY
2,

a
)
Y,

o
ﬁ”’

)

Pi1)

—~ P2)

(0,1,0)

(0,0,1)

P(3)

Iig. 2.3.2. Tangent Space

l.l

Y ﬁ -'- - e e e e e . . o o
. - - . - hd R A I NS P ‘. T a P R AL B o et - - A " -

t!l«"sk&.‘ iﬂ- U PRI I SR PP ST '--'. P PR TN AT TR I WA AT AR SR IR SR AT AT WA, S

A v ey

O
a

RRGNAG { _feraavynye

T @

PPN

32

The set of tangent vectors at the interior point P consists of an entire
subspace, which is given by

Tp = 4{d = (d},d,}: d; ¢ R™, lmj d(r) =0}
x=1

(P interior to K)
Observe that T and K are parallel flat surfaces.

When P lies on a boundary of K, the tangent set is a proper subset of the

above space T where P, is any interior point. That is, when the assignment

P has some zero components, the set of vectors of the form a*(v-P) is
restricted to

Tp={d=(d,....4,) deR™ 3 d) =0,
A=1

and di(A) > 0 if P(\) = 0}

2.3.4 Maximizing Average Local Consistency

From Theorem 2.3.1, maximizing A(P) corresponds to finding a consistent
labeling. The increase in A(P) due to a small step of length a in the direction

U is approximately the directional derivative:

A(P + ail)~ A(P) ~ :T AP + ta@l) = grad A(P)-ad
t=0

where ||ul| =1. The greatest increase in A(P) can be expeeted if a step is taken
in the tangent direction u which maximizes the directional derivative.
However, if the directional derivative is negative or zero for all nonzero tangent

directions, then A(P) is a local maximum and no step should be taken. To find

.........

1
4
A
j

GO S Sl A Al el g g eug

AL e S b 8 Bl TR S e s hom Sie i e o a e o

33

SAXS0 oo

a direction of steepest ascent. grad A(P)11 should be maximized among the set
of tangent vectors. However, it suflices to consider only those tangent vectors
with Euelidean norm Hﬂl =1 together with U =0.

Thus the direction of steepest ascent can be found by solving the
following.

Problem I: Find Te TpMB(0) such that d-q>vq for all ¥¢TEMNB,(0),
where q = ‘—l) grad A(P). Here B{0) = {¥ ¢ R"™:||¥] <1}

When the maximum u°q =0, we will agree that 7 =0 is the best solution to

problem 1. Conceptually, starting at an initial labeling P, we compute
q= % grad A(P). and solve problem 1. If the resulting @ is nonzero, we take a

small step in the direction u, and repeat the process. The algorithm terminates
when u =0.
When P is the interior of the assignment space K, solving problem 1

corresponds to projecting q onto the tangent space Tp, and then normalizing.

Lemma 1 If P lies in the interior of K, then the following algorithm solves

m
(1) et (= n" Vogle) i =1

ex |
(2) set W) = q M) -Coallag) N
(3] set udA) = WiA)/|[W], all i X

, 12
Here, H\‘\” = __: \\'ilk)g
Y

A R R T T P i VA T T et s S T e T DR
. F A E S E AT AR SR S T TP C S WV VR T A U AT el e

Proof:

Since ||1‘1]| =1 and

m m m
Vouh) = V(g =CAF =Y g -me]/||#] =0 for alli
A=l A=1 r=1

from the definition of tangent space, it is obvious that
To observe that W is the projection of g onto Ty, we need to prove that
(@-w)+v=0for all ve Tp.

VIV (GMWA) i A =N M =0 since Ve Tp

_Jl_J:
i 1 A

Thus Vg=v'w for all VTp. Since Ue Ti‘

TG = W= ——-w =W > |7

I

”‘—” < 1). Since H({H H(‘” > Wi, so we have

| for any V<TpMB0) (note that

{

e

icq>ueq for all Ve T MB,y(0)

That is, U solves problem 1.

Combining these results, we obtain the following algorithm for finding a local

maximum of A(P).

o . - -
- - - -
¢
R T 5 e e T R
L T L A ORI N . . - S - '.'\.‘ e e e A ~
e O R N NP L IR T A L S B T R R
NN NPGIN, Y P G IR PR PP L PR POV JIREAN G T S AP VU S IS PSP S S0 VU PO YO P i S Wi POy

Algorithm 2.3.1:

Initialize:
(1) Start with an initial labeling assignment P°¢K. Set k =0. Loop

until a stop is executed:
. . k1 >k
{2) Computeq = 9 grad A(P").

(3) Use the algorithin in Lemma I, with P =P¥, ?i:?]k, to find the
solution T to problem [.

(4) If T =0 stop.

(5} Set P+l =pP* + ki*, where 0<h<a, is determined so that
P**'¢ K. The maximum step size a; is some predetermined small
value, and may decrease as k increases to facilitate convergence.

(6) Replace k by k + 1.

End loop.

In summary, successive iterates are obtained by moving a small step in the
direction of the projection of the gradient ¢ onto the convex set of tangent
directions T, The algorithm stops when this projection is zero. We now have
a method for finding consistent labelings, given an initial labeling assignment.

Reeall the variational inequality for consisteney from Theorem 2.3.1:

VIV NP N =P < 0 for all FoK

BERS

or, more generally,

'I:'.':‘f' ', v" o .l.

18R,

»

S
._\._.

e .
S [T [IR e e

I VL S DY D R YTl . SRS
PV R ° RS AP R S AR T A e e e
222220 28 [PR TSTININY a2 P o'y 'h)' "'h "a \" ‘e 'i‘ \1':_\‘,'

. AR
L S AR S
ORI R S WL

T s T T T ————_—w.

RN N S AN R i Al SN D ol T e abd ane gas sng el o=

36 —
b
px

S

LA '-‘_.-
&

XK

Y S(NP) - (vi(M)-PX) <0 forall v ¢ K
i\

v,
i)

4 %
[\"
3

Hereafter, we define the components of g by

A = N '7;5()\,)\')Pj()"))
IRy

that is, we have set = §(l—’).

Qbservation 2.3.1: With G defined as above, the variational inequality is

equivalent to the statement

G-t <0 forallt ¢ Tp.

That is, a labeling P is consistent if and only if § points away from all
tangent directions.

Proof: We have §=S, and any tangent vector t at P can be written as a
positive scalar multiple of v—DP, where veK. The observation follows
immediately.

Therefore, if at a labeling PP, the associated vector q points in the same
direction as some tangent vector, then I is not consistent. So P should be
moved in the direction of that tangent vector. The process may be repeated
until § evaluated at the current assignment points away from all tangent
directions. Then P will be a consistent labeling. Note that § varies as P
moves, but that generally § will change smoothly and gradually.

If §+U> 0 for some tangent direction 1, then the current assignment P s
not consistent, and should be updated. 1t makes sense to move P i the

direction u that maximizes +ii. Therefore the relaxation labeling algorithm is

given by the following.

~- A A T A
-
\J

37

Algorithm 2.3.2: Replace step 2 in Algorithm 2.3.1 with:

(2') Compute q= §(I—;). That is:

Gix) = N NN) PN
N

All other steps remain the same.

Proposition 2.3.3: Suppose P is a stopping point of Algorithm 2.3.2. Then Pis

consistent.

Proof: A point P is a stopping point of Algorithm 2.3.2 if and only if ¥=0
solves problem 1. If @ =0, then V.q<ia-G=0:3=0 for all tangent vectors
veTp. On the other hand, if t*3<0 for all t¢Tp, then T =0 maximizes T*q
for iifTFﬂB,(O). According to Observation 2.3.1, t-G<0 for all te Tp is
equivalent to the variational inequality, which is in turn equivalent to P being

consistent (Theorem 2.3.1).

At this point, we have presented the relaxation labeling algorithm in such

a way that the stopping points of the algorithm are consistent labelings.

Recall that a labeling is strictly consistent if

VPS> VS, 0 = L
A S

whenever v /P, veK. As a result, the variational inequality can be replaced

by the statement

Y NP v - Pi(N) < 0
PERY

.
:-._-‘__;’_....‘,._ RN o - ; LI
P PIC AP AL I L A '." =, e
;1. ..J"' ‘n‘"-l. o .".‘:lf "f .:'.“ Ve

3R

foralv (K, v/D

for a strictly consistent labeling. In particular, G+ < 0 for all nonzero tangent
directions T at a strictly consistent labeling P. We claim that P K* (i.c., that
P is an unambiguous labeling). Suppose, for contradiction, that 0 <P (A)) < |
for some (i, A,). Then for some other AL O<P (M) <. We consider two
tangent directions,

0 L/,
WGiN = Yo 01,.-1,..0), =i,

and U, = - u; .

That is, U, has a 1 in the (i,,\,) position and a =1 in the (i,A,) position, and i,
is the other way around. These are valid tangent directions according to the
formulation of Tg. However, ey =—q -y, so they cannot both be negative,
Hence, we have shown that a strictly consistent labeling P must be
unambiguous. Thus if @ points away from the surface K at a vertex (i.e.. an
unambiguous consistent labeling), then @ will point generally toward the vertex
at nearby assignments in K. Accordingly. if P is near the unambiguous

consistent labeling, moving P in a tangent direction @ that points in the same

direction as q, should cause P to converge to the vertex.

2.3.5 Relaxation Operator
Algorithin 2.3.2 updates weighted labeling assignments by computing an

intermediate veetor , where

G(A) = 2 N (WP
i N

and then updating P in the direction defined by the projection of g onto Tp.

~ - - B - . . . v “ N . < - - . . AP A Sl P Sl S S Br 4 v TR T Y N
3 A AR SV AP AN A S S i) ChaC A Pl v L i el -
- Lt T TN T -t a0 . e N WS -y
PR I P RN SN L

39

As we shall show, the original updating formula (1] has the intermediate vector

q defined by

PP N S A |

([l(X) = S (l'u' 1: ’le(x,k') P](X’)

i by
In Algorithm 2.3.2, we set q;(x) =S;{A). Here the support vector S is a function

S(P), where S{)\) is computed from a nonlinear function of current assignment

AR M RCRP

values in P. Presumably, S;(\) depends on the components of ﬁj for objects j
near object i, and is relatively independent of the values of Fj for objects
distant from i. Therefore, the different objeet j near objeet 1 is given an
influence on the support function (;(2) which depends on the value of weighting
constant d;; and has no influence on qi(3) at all if d;; is zero.

The principle difference lies in the manner in which 7 is projected onto a
tangent vector. In Algorithm 2.3.2, the tangent direction was obtained by
maximizing @ *q among ¢ T M By(0).

One of the standard relaxation formulas was suggested by Rosenfeld et al.
. [3] and is given by
PO+ gM)]

PN = —
Y Pe)l1 + qfe)]

e=1

(It is assumed, when using this formula, that the 'nj()\,)\') values are sufficiently

} small so that one can be sure that |q-,()x)| < 1.) There is another similar
formula, actually derived from this one by transforming compatibility
coefficient 4;(\,\") to conditional probability Pij(kl A'). Therefore the proof of

~ convergence for one is automatically valid for the other.

l’ ‘ll 'l
', % 'ﬂ :'. £ oy
SIS

)
L s
-
R

v’"

e
A A

' v
P o

g §

A
<]

....................

40

To consider the behavior of this standard formula, first assume that P s RIRREN
near the center of the assignment space, so that very approximately
PN ~1/m for all i, \. The updating can then be regarded as consisting of

two steps. First, the vector P is changed into an intermediate I°, where
PN = P01+ g\)] = P\ + q\)/m.

Next, P is normalized using a scalar constant for each object Pi. When 17 is
near the center of K, this rescaling process shifts P in a direction essentially
perpendicular to K. That is, P’ is reset to approximately the projection of P

onto K. Denoting the orthogonal projection operator by O, we have
P =P ~0(P)~0O(P + g/m)

by virtue of the continuity of O,. Further, assuming that P is in the interior

of K, and q is sufficiently small, then
= _ = 1 —
O(P + §/m) =P + o 0+1(3)

where Or is the orthogonal projection onto the linear subspace Tp. However,

the solution @ to problem 1 is obtained by normalizing O1(q). Combining, we - ”
have that 4 e

P~ + au

for some scalar a. Thus, P is reset to a vector which is approximately the
updated vector that one would obtain by Algorithm 2.3.2.
When P is close to an edge or corner, the situation is somewhat more

complicated. The first step in standard updating (i.e.,

Pi(k)ZPi(X)[l+qi()\)]=Pi()\)+l‘i(>\)qi(k)) can be viewed as an initial

operation changing q, since the components of q corresponding to small

..

LM SEME A TR L0t AL 2 FE Se e o

components of P have minimal effect (i.e., the motions in directions
perpendicular to the nearby edges are scaled down). The normalization step is
the same as before. Therelore, the formula results in attenuation of motion
perpendicular to an edge. Further, a zero component can never become

nonzero even if the evidence supports the value.

2.3.6 Supervised Relaxation Operator

Now we are prepared to establish the convergence property of the

supervised relaxation operator.

The original relaxation operator [3] indicates that Py(\) is updated by
Pi(M{1 + qi(7\)] in which q()\) is the ncighborhood function. Actually,
PN [1 + q(N)]) =Py A) + Py(M)qi{)). These m likelihoods, Py(\), A =1,...,m,
form a m-vector, f—’i, for the current object i. Similarly, Pi(X\)q;(\), A =1,...,m,
form another m-vector, P,q. The formula, P\)g(\}, implies that the
neighborhood contribution to the class A at current object i should remain
relatively unchanged if the class A at current object i has likelihood close to 1;
otherwise it should decrease. The likelihood space of P; and the vector Pyq; are
shown in Fig. 2.3.3, in which Pq; influences the movement direction of P.
After normalization, the summation of the components in the newly updated

vector F; is equal to 1. That means the vector P; + Pq; is rescaled to make

—_1
the new veetor Py still in the likelihood space.

In the supervised relaxation algorithm, before ¢, defined later, influences
the movement direction of i_’i, the P;(2) is influenced by Q;(N\) using the formula
PiNQiN) in which Q(\) is also a neighborhood contribution but the

compatability coeflicient +;(A\X") is expressed in terms of the conditional

S
SANNS
e
" .\ '.

Y
.I
~

t_Jcaarieg me g

P

P(3)

Fig. 2.3.3. Likelihood Space of Relaxation Operator

. probability Pij()\l A'). This can be seen in Section 2.1. Q;(X\), X =1,....m, forms
l" a m-vector (—)i. For the supervised relaxation operator, the vector l—),' is then
7 modified based on the probability derived from ancillary data sources using the
i formula Pi+()\)=l’;()\)wi()‘). Again, ¥(X), X=1,..m, forms a m-vector ;/_’i-
The vector y,; for every object i, i =1...n, is fixed and doesn’t change its
component values while the supervised relaxation algorithm proceeds. But the
vector 1Zi at an object i and 1?,- at an object j are likely to be different. That is,
every object i has different vector Ei. These three vectors, l_’-,,(T),-,, and Ei, are
shown in Fig. 2.3.4 in which vectors Q; and ¥; compete with each other to
influence the movement direction of .. Of course, P, has its preference to one

of labels assigned to object 1 through the initial likelihoods P19 For example,
if ¢, and Q, don’t have enough influence to force l—‘i move away from the vectex
(1,0,0), in which X is favored by f’_i—(o), shown in Fig. 2.3 4, the final labeling of
l_’i will move toward and stay at this vertex (1,0,0); otherwise it will move to
one of the other two vertices. From theorem 9.1 in [13], P; will reach an

unambiguous labeling assignment (i.c.. moves to one of the three vertices) if P,

approaches sutliciently close to any one of these three vertices.

2

! 2.4 Simulation and Experimental Resalts

) The supervised relaxation algorithm was programmed and applied to the
L analysis of a set of Landsat multispectral data. The data were colleeted by the
!' satellite over the San Juan Mountains in SW Colorado [1]. The objective of

the analysis was to diseriminate among the ground cover elasses suceh as “oak™,

“

“ponderosa pine”, “aspen”, Upasture”, “douglas and white fir?, “snow”,
“water”, and “other”, where the [ast category was simply a catchall. FEach

class was actually decomposed in the analysis process of clustering and merging

e T T TR ST e e e el
e e T T T AT A
e b o B e B M mlawmt wt oab o &7 R Lt

'f\-", ,,.n

3 - - . -
B . DRSS R A R A
LEE RN LY LA A AP A A I SRR AT I S I,

o
a3

44

APLFLIL NI
'_.."..r'.:‘_:‘..n". 20N
Y
e Pt

4

.]

1

R o aul
o
Y
o
Y
.
N

i

-
]

l"f A
I e

AN
l.:l‘

et
':'l RN |
q" .
oy

-

v

[
o
e

Pi(1)

1

P;(3)

A

OIS L R &
P LA I

B "'
e

Fig. 2.3.1 Likelihood Space of Supervised Kelaxation Operator

I L S R
M LIPS T TRV . -

T r— T
- v A L RS NABPE RO U sl g ol S s et aves ol oM ot son o o Laren o~

into a union of subclasses, each having a data distribution describable as

approximately multivariate normal.

2.4.1 Results from the Maximum Likelihood Classification Algorithm

To provide a baseline for comparison, the data fiom the first and the
second channels, which were in the range of visible wavelengths, were first
analyzed using the maximum likelihood classification algorithm. The a priorni
likelihoods of the classes were approximated as being equal, and 2122 test
samples, independent of the training samples, were used to evaluate the results.
Due to different numbers of test samples in each class being nsed in the
evaluation of the algorithm performance, the measure called average
performance by class is used to avoid any bias toward any class which has the
largest number of test samples. As shown in Table 2.4.1, the average

performance by class of this conventional maximum likelihood classifier was

38.5 percent correct.

2.4.2 Results from the Relaxation Operator

To implement the relaxation analysis, the most formidable job is
estimating both the initial likelihoods PO(\), xeA and the conditional
likelihoods P;(A{A*). The initial likelihoods are available in the penultimate
step of the maximum likelihood classification using 2-channel spectral data only
(i.e., just prior to the pixel being labeled according to the largest of these
likelihoods). The required context conditional likelihoods l’-‘j(kl)\') were
estimated from the final classification results produced from the maximum

likelihood classification algorithm by counting joint and individual occurrences

-
-
-

of the classes. However, rather than computing four different sets of these

N
)
)
.
A
-

.

R
Sk A‘J 3

M)
ACRE S

:: 4‘...-1"1" :'n"...g'.: PP

ASPEN
PPINE
DWF
PASTU
OAK

..........

SAMP.

16

ASPEN PPINE DWFEF PASTU

132 36 32
388 98 75
195 611 100

31 16 13

o O o o

-1

0 1

Ave. Performance by Class = 38.5

AA Y,

17 ":'v":':ﬁ’f:‘t‘r. s

Table 2.4.1. Test Results for Classification of the Vallecito Quadrangle

OAKN OTHERS

—
o
-1
[

74 29
10 A7

12 12

= -
BN

. - B

- S u

- Al

'''''''''''''''''' _-'.-' .'_. '

I RN I P AP WV YA PN W DN P S |

corresponding to each different neighbor type (left, right, above, and below), a
single set was calculated by counting joint occurrences in both directions both

vertically and horizontally.

The same test samples were used to evaluate the rosults. The results of
this relaxation operator at iteration number 5, 10, and 20 are shown in Table
2.4.2. The final result was shghtly better than the naximum likelihood

classification. The average performance by class was 10.3 percent correct.

2.4.3 Results from the Supervised Relaxation Operator with One Ancillary

Information Source

Due to the nonavatlability of multiple ancillary information sources and
the desire to demonstrate the feasibility of the algorithm, channel 3 data was
used as ancillary data in the experiment. The supervised relaxation operator is
now shown, by example, to be a useful tool for incorporating information from
one ancillary data source, channel 3 data, into an existing classification
produced from the maximum likelihood algorithm using 2-channel spectral
data. Channel 3 is an infrared speetral band. The mean and standard
deviation of each class having a data distribution describable as approximately
normal were estimated for channel 3 using clustering and merge-statistics
algorithm. From these data, sets of ¢,()\) for each pixel in the image were
generated and incorporated in the supervised relaxation algorithm. The same
initial likelihoods and conditional likelihoods were again used. Several
relavation tests were performed using differing degrees of supervision, i.e.,
various weighting constants given to the influctice of the ancillary data via the

parameter J. The value of 3 which produced the best results was chosen.

s

e

3
L

Table 2.4.2. Test Results of Relaxation Operator at Iteration Number 5, 10.
and 20

SAMP. ASPEN PPINE DWF PASTU OAK OTHERS

324 207 41
661 525 93
996 150 779
120 45 18

18 10 0

Ave. Performance by Class = 38.6

(a) Results at Iteration 5

SAMP. ASPEN PPINE - DWIE PASTU OAK OTHERS

324 220 41 0 : 59
664 540 90 23 1
996 149 794 31 19
120 45 20 43 12

18 11 0 1 6

Ave. Performance By Class = 39.4

(b) Results at Iteration 10

SAMP. ASPEN PPINIE DWF PASTU OAK OTHERS

324 0 234 41 0 49
664 0 554 87 21 0
996 0 146 810 28 12
120 0 46 20 44 10

18 0 11 0 1 6

Ave. Performance By Class = 40.3

(¢) Results at Heration 20

19

Again the same test samples were used to evaluate the results. As shown in
Table 2.4.3, the average performance by class was better than the ordinary
relaxation analysis. The final result is 64.1 percent correct. In addition, a
closer Jook at the class-by-class results reveals that the performance for each
class was better than those attained using the relaxation operator without

ancillary information.

244 Results from the Supervised Relaxation Operator with Two Ancillary

Information Sources

In this section, the supervised relaxation algorithm is shown to be an
effective technique for incorporating information from two ancillary data
sources, channel 3 data and elevation data, into an existing classification to see
any improvement in classification accuracy over that obtzined with only one
ancillary source. Figure 2.1.4 shows the distribution of tree species as a
function of elevation for an area northeast of the Vallecito Reservoir in the
Colorado Rockies. Fig. 2.1.2 shows a digitized terrain map for the area covered
by the multispectral scanner data described earlier. From these data, the
second set of ¢,(\) for each pixel in the image was gererated and used along
with those generated from the first set of ¢(N\) in the supervised relaxation
algorithm. The same initial likelihoods, conditional likelihoods, and test
samples were used. The weight constant producing the best results was chosen.
As shown in Table 2.4.4, the average performance by class using two ancillary
data sources of information gave the best result, 80.8 percent accuracy. The
results from the maximum likelihood algorithm, the relaxation algorithm and
the supervised relaxation algorithm are compared and drawn in Fig. 2.4.1.

From this figure, it is clear that the more information we use, the more

I P D O

Table 2.4.3. Test Results of the Supervised Relaxation Algorithm with One
Ancillary Information Source at Iteration Number 5, 10, and 20

SAMP. ASPEN PPINE DWF PASTU OAK OTHERS

ASPEN 324 29 205 39 l 20 30
PPINE 664 0 568 58 20 16 2
DWF 996 3 114 865 1 0 13
PASTU 120 0 24 3 83 7 3
OAK 18 0 3 0 2 11 2

Ave. Performance By Class = 62.3

(a) Results at Iteration 5

SAMP. ASPEN PPINE DWF PASTU OAK OTHERS

ASPEN 324 29 222 41 1 5 26
PPINE 664 0 579 54 18 11 2
DWF 996 0 98 890 0 0 8
PASTU 120 0 23 3 86 8 0
OAK 18 0 3 0 2 11 2

Ave. Performance By Class = 63.7

(b) Results at Iteration 10

SAMP. ASPEN PPINE DWF PASTU OAK OTHERS

ASPEN 324 29 224 45 1 2 23
PPINE 664 0 586 52 18 8 0
DWF 996 0 95 893 0 0 8
PASTU 120 0 23 3 87 7 0
OAK 18 0 3 0 2 11 2

Ave. Performance By Class = 64.1

{c¢) Results at lteration 20

...........

...............
S P 1 L 4“"-." . .-".-\ e T T T
PO S, 2 - SIS

-

. LIS) ERE AL R s .
AP I N) .".-'P.l‘?.i-\‘ LTRSS .‘..":n.\.n.’.r-

ASPEN
PPINE
DWF
PASTU
OAK

ASPEN
PPINE
DWF
PASTU
OAK

ASPEN
PPINE
DWF
PASTU
OAK

SAMP.

324
664
996
120

18

SAMP.

324
664
996
120

18

SAMP.

324
66-1
996
120

18

Table 2.4.4. Test Results of the Supervised Relaxation Algorithm with Two
Ancillary Information Sources at Iteration Number 5, 10, and 20

ASPEN PPINE DWF

276 11 22
0 462 73
44 52 849
0 19 3

0 4 0

PASTU OAK OTHERS

0 0 15
8 19 2
0 0 1
87 11 0
2 11 1

Ave. Performance By Class = 78.8

(a) Results at Iteration 5

ASPEN PPINE DWF

202 6 18
0 567 77
11 45 909
0 19 3

0 4 0

PASTU OAK OTHERS

0 0 0
8 12 0
0 0 1
87 11 0
2 11 1

Ave. Performance By Class = 80.1

(b) Results at lteration 10

ASPEN PPINE DWF
206 6 18
0 H68 7
35 42 918
0 18 3
0 4 0

PASTU OAK OTHERS
0 0 4
R 10 0
0 0 |
87 12 0
2 11 1

Ave. Performance By Class = 80.5

(¢} Results at {teration 20

B e o

aTelaa e

52
Average Performance
by Class
[}
80% - —e spectral + 2 ancillary
variables
70% -
—e spectral + 1 ancillary
variable
605 -
50%
40% —eo spectral data alone
30% + v T T >
5 10 20

Number of Iterations

Fig. 2.4.1 Results from Several Different Algorithms

Eab Btk SR e S S M AL S Pl tal Rl
3
L4

!

53

accuracy in classification can be achieved. The probabilistic relaxation
methods provides an effective approach for integrating information from diverse

sources of image data.

For the present study, there is no specific way to determine the value of
weighting constant 7 in [Equation (2.1.6). In any specific image to be classified,
the significance of the ancillary data will depend on its relevance and accuracy.
Consequently, the optimum degree of supervision must be estimated using

training data just as training data are used in establishing classifier parameters.

The algorithm is terminated after the fixed points have been reached. that
is, when the likelihoods assigned to each class at every pixel do not change
when the algorithm moves from current iteration to next iteration. For the
current study, after 20 iterations the algorithm had reached the fixed points.
The final labeling represents a balance in consistency between spectral
information in the initial likelihoods Pi(o)(A), spatial context data incorporated

in Pij()‘l A"}, and ancillary information embedded in the y(\).

B
PR

2.5 Summary and Conclusions

A Y L

The relaxation operator has been adopted as a mechanism for

.

incorporating contextual information into an existing classification result.
Based on the formula derived in lquation (2.1.4), the supervised relaxation
operator carriers on further and incorporates information from multiple
ancillary data sources into the results of an existing classifieation, i.e., to
integrate information from the various sources, reaching a balance in

consistency between spectral, spatial, and ancillary data sources of information.

oo e, e
MIOAAR T, . -
Vo LN VA ".'_.-

v

51

In Section 2.1, the supervised relaxation algorithm was derived from the

standard relaxation formula to incorporate ancillary information by adjusting
the neighborhood contribution to contain the influences from hoth local context
and ancillary information. This means that the moving direetion of the initial
likelihoods is influenced now by both locat context and ancillary information as
shown in Fig. 2.3.4. The proof that Algorithm 2.3.2 stops at consistent
labelings can be used for the supervised relaxation algorithm by generalizing
the support (or neighborhood function) not only from local contextual
information but also from any other information, which is useful to improve
the classification accuracy, such as ancillary information described in Section
2.4. Thus, the final labeling resuits from convergence of evidence, reaching
consistent labelings, i.e., integrates information from the various sources,
achieving a ground cover classification which is both accurate and consistent in

the face of inconsistencies which may exist among the data components.

Section 2.4 showed experimental results of the supervised relaxation
algorithm. With the contextual information incorporated in the relaxation
algorithm. the performance was slightly better than that obtained from the
maximum likelthood classifier. By incorporating one ancillary information
source, channel 3 data, using supervised relaxation algorithm, the performance
was much better than previously obtained. For the arca classified, there were
data available describing the elevation preferences of the varions tree species,
along with a digitized elevation map. By incorporating both elevation data and

channel 3 data in the supervised relaxation algorithm, significantly better

e T e e T
< .

. K} IR R R
Tal e te e Tt e e Cate T et L
R '\

N Tt L SN
e T e e e L e - : W -
A ST R AT A SR VL L r L F AR R VRV VAL A VIRV RO

TN
Santad

e
Latala

A

55

a £
. e Y0 LS

.

performance was obtained. These results demonstrate that the supervised

relaxation algorithm is a uscful technique for incorporating both contextual

.

information and multiple ancillary information sources into an existing

classification.

v s
-

.

It will often be the case that one has only a classification map to work

e
)

with rather than sets of likelihoods generated by a classification algorithm.

Under this circumstance, arbitrary ‘“probability” values consistent with the

Y

classification can be assigned to classes at every object as the initial likelihoods.

< Of course, the label for a particular objeet indicated by the classifier as most
likely must be assigned the largest probability value. But for the present
study, the initial likelihoods, l’-l(o)(k), X €A, were available in the penultimate
: step of the maximum likelihood classification using spectral data only.

Therefore, classification results with higher accuracy may be expected since

pixels or objects with only marginal likelihoods from the maximum likelihood

A I

classifier may have their classes or labels changed eariy in the process rather

[l, '.l

than having them fixed erroneously as a result of the initial likelihoods

S
e

IR

assigned. As seen from the classification results, the distributions of various

N
al

classes tend to be more homogeneous than that before relaxation. This is the

characteristic of the relaxation operator showing that the spatial context
B information has been used. IR
At the moment, there is no speeific way to determine the value of

weighting constant 4, in Equation (2.1.6), through which the supervised

> e s 4
D

relaxation algorithm allows the relative influence of spectral and ancillary data

IO
CA A

sources to be varied. In any particular image to be classified, the significance

4

)

of the ancillary data will depend on both its relevance and accuracy.

Consequently, the optimum degree of supervision, i.e., weighting to be given to

56 -
PR
» vy
the influence of the ancillary data via the parameter 3, must be estimated :Zf'_;.':‘_:'.:'
‘-'.-‘.:"
using training data just as training data are used in establishing classifier P!

parameters. Obviously, this involves additional analysis cost.

The contributions from the four nearest neighbors have been used in the
supervised relaxation algorithm for the present study to incorporate the
contextual information into an existing classification. For the simulation
presented in Section 2.4, equal weighting constants, d;;, have been assigned to
the four nearest neighbors; i.e., these four neighboring pixels have equal degree
of influence in the neighborhood contribution. If the weighting constant, d;;,
can be dynamically adjusted to allow different neighbors to have different
degrees of influence on the current pixel classification, the classification
accuracy expected may be better than that with fixed weighting constants.
Clearly. there is a tradeoff between the better classification accuracy and the

cost involved in dynamically adjusting weighting constants.

In the integration of multiple ancillary data sources, the elementwise

product of sets of likelihoods derived from distinctive ancillary data sources is

used. This means that cach distinctive ancillary data source is given equal
degree of confidence. In a more complicated case such as one ancillary data
source being more reliable than the other, it inay be desirable to assign two

different weighting constants to the different data sources.

To use the supervised relaxation as a post classification technique. the set
of context conditional likelithoods |‘ij()\|) must be determined. The required
context conditional likelihoods, Pijp‘l A). can be estimated from the results of
the maximum likelihood classifier if no other spatial model known to be correct

for the image under consideration is available. Obviously the results will suffer

some inaccuracy because the conditional likelihoods are estimated from the

R . R

RN U T I A SR
RPUEIT ST P IR IEIORPIEIE I I N

PR

results which are not perfectly correct. For the simulation results presented
here, the contextual conditional likelihoods were estimated from another source £ RS
of data known to be correct. When the number of possible classes involved is
large, the number of Pijp‘l X') values is also large. Based on the work in {20],

it is suggested that highly accurate compatibilities are not required. Therefore,

reasonable values can be estimated from the results of the maximum likelihood

classifier or from some forcknowledge of the spatial characteristics of the image TS

data if the initial likelihoods in the penultimate step of the classification

algorithm are not available.

RIS |

R AR

.l
)

“y =t v v »
.
'y

- e s
() -
.

Dl g™
.
.

b AL

.
.

LI AN

v

3

PR P A I Ce e L
- - - . - ‘. L3 . " n" - - S e) : . - h
YR VSIS LSS, PR P PE o A IEA N

W

PRI A -
P RN
S AP, AT S

oo a' et

T/ITMEEY VY T T S .. Tt o s W amm—e w 5 & -

e r

’

v -
« ” -

A H S vt T S T Y Y Y TR e L,

o TEEKE LA

ool LT Y T T .. e

58

CHAPTER 3 - PARALLEL PROCESSING

This chapter will describe how an optimal system configuration can be
determined based on the performanee criterian and parallel architecture
described ir this chapter. An SIMD (Single-Instruction-stream, Multiple-Data-
stream) machine, as shown in Fig. 3.1, consists of a control unit, N processors,
N memory modules, and an interconnection network. A processor and a
memory module forms a processing element (PE). The control unit broadcasts
instructions to all active PEs and all active PIs execute the same instruction,
in lock-step, on the data in their own memories. The interconnection network
provides a communication facility for the PLs. An MIMD (Multiple-
Instruction-stream, Multiple-Data-stream) machine, as shown in Fig. 3.2,
consists of a coordinator, N PEs, and an interconnection network. LEvery PE
fetches instructions from its own memory and executes them on the data in its
own memory. Every PE executes the instructions independently and
asynchronously. The interconnection network provides a communieation

medium for the PEs. The coordinator orchestrates the activities of the PEs.

Secticn 3.1 will present the application of S-Nets [14,15] to describing an
SIMD and pipeline implementation of maximum likelihood classification, and
several perforinance measures to evaluate the inherent parallelism in this
algorithm will be discussed in this section. In Section 3.2, for the algorithm in

block €' shown in Fig. 3.2.1 the algorithm excention times based on the

1
4 ,‘",1
e_¥
3y

A
£

7

"
',"’" ’
T

14

il AR
¢4
4

A T

e v ~
RSACLI I s b S a e ade B

SO TE TN

MEAL e

Rl i gl - 2,

T T TN TV

w - vy

Sw e

03

AT e b

59

N-1

CONTROL UNIT

PE N~1

PROC.

N-1

MEM.

1

PE 1

PROC.

1

MEM,

o
us
a

PROC. O

0

MEM.

INTERCONNECTION NETWORK

SIMD [26]

Fig. 3.1.

. '{.'.‘-

P

P PR SN

>

P

.
o

e
N

e

g

PRI
A
La St S

COORDINATOR .

PROC. 1 PROC. N-1

MEM. 1 MEM, N-1

1 1L
INTERCONNECTION NETWORK

S

Fig. 3.2. MIMD [26]

YRR e SR A I At e A S o i s L

61

counting of explicit and implicit operations in both SIMIy and MIMD mode of
parallelism will be compared and discussed. In Section 3.3, several performance
measures different from those in Section 3.1 for SIMD will be discussed. Most

important is the determination of the optimal number of processing elements

for a given image size by considering the tradeoff between the cost of execution
time and processing elements. Seetion 3.4 will describe how two multistage
networks [16,17,18,19], cube network and ADM network, can be configured to

support simultaneously both MIMD and SIMD modes of parallelism.

3.1 Modeling Image Classification by Means of S-Nets
Synchronous Nets [14,15], hereafter S-Nets, are an extension of Petri nets
and were developed especially for the description of SIMD processes. This

section presents the application of S-Nets to describieg maximum likelihood

classification, which is commonly used for classifying remote sensing image

data. This application is fairly typical of image processing operations which :_".::‘ﬂ--.

are nol window-type operations, i.c., they depend on the data at a single pixel e

rather than a neighborhood. In general, the higher the dimensionality of the

remote sensing (multispectral) data and the more classes represented in the

image, the greater the potential benefits to be derived from SIMD
implementation of the process. This section begins with an introductory

overview of S-Nets.

e el Nt
e - . - L. LT . - . . . 3
e e e W P T T L T T S S P PO B - S ~
. E W YR A S R S R, S O S P P P T N AT S
S VR VLSS T T A S TSP P WA VR VR AL R R A WAL WA i i SR

B
.i
~
.
.
2.
.:.
i~
i

62

3.1.1 S-Net Structure: Overview [14]

S-Nets are defined in terms of sets. The elements of a set are designated
within { }. The notion of tuples is denoted by < >; a tuple consists of
ordered components. An S-Net graph is a quadruple (T.S.U,A). with an initial

marking Ko and a set of transition deseriptors D, where:

T = A finite set of transitions {t;,ts ty|}:
S = A finite set of scalar places {s;.50, . . ., 8|5] 4
U = A finite set of vector mask places

LSV M, >, <VaMy> <V yp My > -

A = A finite set of directed ares {a;,20,.-,3| A| 1.

Additional symbols utilized in constructing S-Net graphs are shown in Table

3.1.1.

A marking associates a non-negative integer with cach scalar place - K(s)
for each s € S; and two vectors of non-negative integers with each vector-mask
place, one of these vectors being a boolean vector K(V;), for each V;, and K(M;)
for each M. An initial marking K is defined as the first marking of the S-Net.
The set of possible mask markings for any M, is W(M;). The marking
<1,1,0,0,0> of M; shall be denoted as <12,0>. In S-Net graphs, markings
are indicated by the presence of tokens. Dots in any place represent tokens.
The symbol 1 shows the presence of a token in a mask. An assignment of
tokens to a vector place V; may leave some of the component places marked

with tokens and others empty. The dynamic behavior of S-Nets is described as

follows.

ERCAS

LA g LA Gl RIS Sl e
M

63

Table 3.1.1. Symbols Used in S-Net Grapbs

"
+
”
| transition, t;
O scalar place, s;
> ! vector-mask
-
> : : place, <V M;>
‘ L mask, <m;y.Miz MM >
. ector of dimension = | Vi
S - 1 a4 vector-mask
. O._ i place with
: marking
- Ok
:. .:_\::\::\
J A A
. o
4.. e e
MAVEATAEAT) ...-_‘.. "'-'_"'_'-“ﬁ':: . ___<‘4_.~.‘ . ‘: R -T] Y
AR TR VLYW W VTRV \-..L.;.l::):- “::.;::i;i ; ;“.‘s ;‘.‘l'. 2 -i

..

2 A scalar place is holding il it has at least one token in it. A vector-mask A
L place <V M;> is holding if at least one K(my) =1, i=02,[M;| . and the ?-“S“"'-
corresponding v;; € V; has a non-zero marking. A ftransition t is enabled if all Y
scalar places of transition t are holding and all vector-mask places of transition
t are holding. When a transition t is enabled, its firing function is defined at a
given marking K, of the S-Net, and the firing yields K, +,, 2 new marking. A
transition type specifies the firing capabilities of the transition - either simple

or mask firing - designated SFT and MFT respectively. A transition descriptor

D[t} for a transition t with vector-mask output places
<ViM>, <ViMj>, ..., <V, M, > is specified as D[t} = [type; e
K(M)eW(M,), K(M;)eW(M;), - . ., K(M,)eW(M,)].

A sitmpie firing associated with an enabled transition t is such that:
(a) For every scalar input place s, K, +,(s) = K,(s}-1.
(b) For every scalar output place s, K 4+ (s) = K, (s)+1.

(c) For every vector-mask input place <V;M;>, then for vyeV;

3 i=12,,| Vi|, Kpea(vi) = Kq(vi;)—1 for those j for which m;;eM; has a non-zero
marking; and for myeM;, K +,(m;;) = K, (my) for all j.

(d) For every vector-mask output place <V;M;>., then for v;eV;

1=12,,| Vi| L Kpaalvy) = Kq(v;) +1 for those j for which m;;cM; has a non-

zero marking; and for myeM;, K4 (my;) = K (my) for all j.

As seen from the firing rules, SFTs do not alter their input or output masks.

A mask firing is associated with an enabled transition t that has at least

one <V;.M;> output place, and is such that:

65

(a) For every scalar input place s, K, 4 (s} = K (s)~1.

v

(b) For every scalar output place s, K 4 (s)=K(s) +1.

(¢) For every vector-mask input place <ViM;>, then for v.eV,

y &
Wt

'f‘ LA AL

=120 Vil K4 (v) = Ky{v;)-1 for those j for which m;;eM; has a non-zero

R T

marking; and for myeM;, K, 4 (mj;) = K (my) for all j.

(d) For every vector-mask output place <ViM;>, then for vueV,
i=02 Vi| - Kpeglvi) = Ko(vi)) +1 for those j for which myeM; has a non-
zero marking; and for M;, K, 4 (M;,)eW(M,), where W(M;) is specified by the

transition descriptor D|t}, and K, 4;(M;) is non-deterministically chosen.

By the firing definitions, firings remove tokens from some places and add
tokens to other places. However, the number of tokens subtracted by a
transition firing does not necessarily equal the number that it adds.

SFTs on firing do not change the K(M;) of their <V,M;> input and
output places; the markings for any output masks of the transition are specified
at K,. This transition descriptor is noted simply as D[t} = [SFT; _].

For MFTs, the IW(Mi)I > 1 for all output masks. These markings are
accomplished by the transition firing and after initial marking, and the set of
markings must be listed in the transition deseriptor, ie., D[t = [MFT;
K(M;) e {< >, < >....,< >}]. In cases where the set of markings range over
the | M;| -fold Cartesian product of the boolean set, then:

D[t] = [MFT: K(M;) ¢ BIM'I] , where B is the set of

boolean numbers {0,1}.

An S-Net is safe iff h(s) < 1forall s € S;K(v;;) < 1forall vi; ¢ V;.

T e R] R U I L R
" . -.".-.'.." PRESOL CRE O ..-' L e e ey _'.'_ I N - '_-‘*.;. _-".- I
PN AEIEHN N PENT W A n'..u'.. PO ICVRPA I S PP SRS AN

66

An S-Net is conssstent iff for all <V, M;> places of the net, no K(v;}) > 0

when K(m;) = 0.

3.1.2. Measures of Parallelism [14]

This section summarizes the quantitative measures of concurrency in S-
Nets, both with and without the context of time. These are called measures of
the degree of parallelism.

The Degree of Vector Parallelism g, of a transition t, is defined as the sum
of the number of tokens fired by the transition into V; of every <V, M;>
output place of the transition.

The Degree of Parallelism g, of a transition t, is defined as the sum of the
number of the tokens fired by the transition into its scalar output places and
into V, of every <V;M;> vector-mask output place.

The Average Degree of Veclor Parallelism g over some sequence of
transitions t;, = t;,t; 4. . . ., t is defined as

F:
=
ol

where | t,| is the total number of transitions in sequence t,.

T

-

E:

-

The Average Degree of Parallelism g over some sequence of transitions

tj't‘j""l' Ce ’t’k is defined as

R
I
(ol
]
g

—
>

A "".‘"__"‘.'-"'.’,'.’"«"."'.‘V-'I‘.'-"J'. Rl Rl i Sudi A Ak 8 Jind g

A

b
t

7 ‘r_ e

6 o

"N
:’:" \’
YA XX
R A h]
% XA

The Average Vector Parallehsm h achieved over some sequence of non- "IN

e

i primitive transitions t, = t;,t;4,....t, is defined as

where e, is the time units the transition t, takes to complete its operation, and

J*’

en = el’.

-
1]
-

The Average Parallelism h achieved over some sequence of non-primitive

transitions t, = t;,t;4, . . ., t; is defined as
k1
DB e
R
e

3.1.3 Stone’s Vector Sum Example [14]

The problem is to compute

. n
- Y, =Y A, n=01,.7
i=0

sothat Y, = Ap
Y Y, = At A

It

Y = A+ A+ -+ A

where Ag,A,,...,A; are scalars. Assume there is a SIMD machine of 8 PEs

(N=8). A high level language expression of the computation, in simplified

form, is as follows.

1. Initialize Y[I] to A[l, 0 <1 < N-1
2. For k =1 step 1 until log,N, do
3. Begin: H{I] = Y[I-2%1], (mask)

4. Y[l = Y[I] + H[l], (mask)

5. Compute new mask

6. End

Figure 3.1.1, representing the S-Net model of this algorithm, assumes an
initial marking: =
Ko(S1) = 1 Ko(Sz) = Ko(S3) = Ko(S4) = Ko(Ss) = (0);
Ko(V1) = Ko(Vz) = Ko(V3) = <0°>;
Ko(M;) = <18>.

Descriptors are:

D[t,] = D[ty = D[ts] = D[t;] = [SFT:_];

D[ty = [MFT;K(M,) = <0,17>]

Dit;] = [MFT;K(M;) € {<0,17>,<0%15>, <04 1> }]
Ditg] = [MFT:K(My) ¢ {<0%1°>,<0%1'>}]

p‘... ‘."‘..'.-

. . ‘ RRORsiee:

Statement 1, modeled by transition t,, indicates that all PEs IS ORI
T

. . A NERAR
simultaneously carry out the assignments: e

e

wing 10399 Jo 19N-S 1'1°¢ 31y

Mu+ A = [lx

[, ye-1IX = [IH

69

11
SN 9\,_;4

Q|

[D —
g

v = 1]y

N

..
'

S

>

LI PRIX

Satata

CRd
La

A

aYa

LI WO N

70 st
Y(0) = A(0), Y(1) = A(1), ..., Y(7) = A(7). BN

Since each PE has both Y(I) and A(l), these operations can take place “in
¥ parallel.”
Statement 3, modeled by t,, requires that data are transferred between
participating PEs. For the firing of t,, H(1) holds Y(0), II(2) holds Y(1)...., and
H(7) holds Y{6). PE, does not participate, since K(M,) = <0,17>.

Statement 4, modeled by tj, has all participating Plis adding L‘
simultaneously. If MFT t; first fires K(Mj) = <0,1°>, then for the first

iteration of the loop, PE 0 does not participate. The first holding of <V3Mz>

models sums: Y(1) has Y(0) + Y(1); Y(2) has Y(1) + Y(2), ete. 3
A branch is modeled by the tg and t; transition which have scalar input

place s3 in common, modeling the result of a test of the iteration counter.

The firing of ty models the first iteration (k=1), the first firing of tg models

the second iteration (k=2), and the sccond firing of tg models the third

iteration (k=3). After the third iteration, transition t; will fire and the

computation halts, as all eight sums reside in the appropriate Y() variables.
Despite the availability of 8 PEs, the degree of parallelism achieved over

the computational flow is not 8 Over the firing sequence deseribed and listed

in Table 3.1.2, g and g are calculated as follows:

g =51/13 = 392, g = 42/13 = 3.23.

The maximum parallelism achieved at this level of modeling is reduced by the

nature of the algorithm and by the scalar processes modeled in the testing of

the loop. The use of the h and h measures are not considered here. In a -:Z::' .

realistic analysis, some weighting of the additional time to accomplish mask F

71

Table 3.1.2. The Measures g and ¢ for Vector Sum S-Net

Transition

Sequence t, g g
ty 8 8
to 7 i
ts 8 7
ty 1 0
ts 1 0
tg 6 6
ty 7 6
ty 1 0
ts 1 0
ts 4 4
ts 5 4
tg 1 0
17 i 0

] =13 51 42

E-—-% =3.92;§=% =323

X

v » -
T
WL

L.

vy
.

'_

A s il A T Sl YA b S -2 A A0 I vt e ol

72

firing would be appropriate, as for transitions t,, t3, and tg.

3.1.4. Modeling Complex Applications with S-Nets [14].

S-Nets have been developed to provide a tool to express algorithm
implementaticn on SIMD and MSIMD architectures. The implementations are
modeled by using safe and consistent S-Nets. In modeling realistic
applications, the first obvious complication in S-Net graphs is that of length,

l.e.,, the length of the transition sequence will not fit within some desired

reference frame. Connectors, such as shown here

may be used to show where an arc breaks and reconnects, much in the manner

that connectors are used in flow charts. The connector can be inserted between

a transitiorn and the following place, or between a place and the following
transition.
Macro S-Net transitions (macros) are introduced to support hierarchical

modeling and 1o permit a more abstracted representation of an event which is a

component of a computation. A macro transiiton t is defined as a transition

which itself is an S-Net graph. It begins with a single vertex t, and ends with
single veriex t,, where t, and t; themselves can be macro S-Net transitions. A
label is appended to the transition bar to distinguish macros in the global flow, \ o

shown as ’;"

rer

£
f

IV

IR IO I

PallFiding

........

where ID is any symbol used by the modeler.
Figure 3.1.2 illustrates hierarchieal modeling, defining two macros and
showing how the substitution of the greater detail can he modeled in the 5-Net.
With this definition, the non-primitive transition t_ (which is a sequence of
transition, ttiyp - - - ,t;) is seen as a type of macro since it represents a

transition sequence beginning with t; and terminating with t,.

3.1.5 Modeling Maximum Likelihood Classification with S-Nets

The purpose of this section is to use S-Nets to model an SIMD
implementation of maximum likelihood classification [21]. Assume that there
are N=M PEs available where the image size is M-by-M. The PEs can be
arranged in a row of M elements or in a VM-by-vM array. Each PE will be
assigned either one image column or a vM-by-vM subimage that will be stored
in its memory.

The SIMD implementation of maximum likelihood ciassification has been
described in [22]. For each of the m possible classes into which a pixel may be
classified, a discriminant function is computed. FEach discriminant value
depends on the pixel vector, the corresponding class mean vector and
covariance matrix, and a constant related to the prior probability of occurrence
of the class. The pixel is assigned to the class yielding the largest discriminant

value.

The essential calculations are as follows. Let

X = [x,,xz,...,xnr. the n-dimensional pixel vector

P S I I P R e ..- - A - e
PR PO PLVE. PP PE W P8 I PR T ST Y

-c. ‘... .

a s T

/

s e e e e -

Fig. 3.1.2 Hierarchical Modeling with S-Net Macro Transitions [14]

fas)

A

AL Ny

e
PP

*e® o O s e
L gt

4

U, = [u},ué,...,u,i,r, the n-dimensional mean vector for class i

el : the n-by-n inverse
D t=1. , of the covariance
. ; matrix for class i

€n1 €nn

¢; = constant pertaining to class i
In addition, A(i) will be the discriminant value for class i. Figure 3.1.3 shows

how these values are calculated and a pixel is classified. The following

conditions are assumed:

1. All pixels are to be stored in the PE memories. Each PE is
responsible for M pixels.

2. Mean vectors (n-dimensional) and inverse covariance matrices (n-
by-n) of m classes are stored in all PE memories. The m class
constants ¢; are also stored in all PE memories.

3. Concurrency between the sealar host and the array resources can be
supported by the hardware. The scalar host can be regarded as the

control unit and the array resources as the processors.

The computation proceeds as follows:

1. Initialize the values of A(i) to constant ¢, for I <1 < m.

-

2. Compute the values of the diseriminant functions for all m classes.

v
v’
W
el e,

ik

BRSSAAE LA YIS A AL S0 e

/* Phase A - initialize the discriminant values A(i) */ ".‘
forie—ltom tafata
do A(i) «- ¢ ;T\Y.‘l".‘

end :-:‘u’\.‘;;

/* Phase B - calculate the discriminant values for each class */ "
for{ —1tom ;
fori—1ton
doy; < x;— vuf
z; — 0
end
forj—1lton
fork — 1ton
do zj — z; + ey * yy
end
A(l) — A(f) - Yj *
end
end

/* Phase C - find maximum discriminant value and class %/
je1
fori—2tem
do if A(i) > A(j) then j « i
nd

]

Fig 3.1.3. Maximum Likelihood Classification of a Pixel

. . - - . - . .
N S S P S R I R S T U P A PO I R S S
VR UERNERR GGG G LTS € P PR P PR R Y AL WRC VAR JRP A ST W WA WA

........

. - T AN A LA Aah A S L AL g ol aa it st e g aed wam e e o
' o - S e T T
o,

4

7 7 - ".". ""‘-' !

3. Choose the maximum value of the discriminant functions. Lo,

4. If there are more data in PEs, then go to step 1.

-~ 5. End

The S-Net modeling this computation is shown in Figure 3.1.4. There are
three macros, INIT A, DIS B and MAX C, defined in Figures 3.1.5, 3.1.6, and

3.1.7. respectively. A brief description of the S-Net is as follows:

- The dimensionality of the V; components, | V;| =M, represents the

number of PEs available in this SIMD implemertation.

- The initial marking of the S-Net is

Ko(Sy) = (1);

l(o(Sz) = KO(S3) = ... = 1{0(828) - (0),
Ko(V)) = Ky(Va) = ... = Ko(Vq) = <OM>;
}(O(Ml) - Ko(M2) = ... = Ko(Ms) = <lhi>,

-
I Y

- Descriptors are:

! Dit,] = Dts] = = D|teg) = [SFT;_];
2 Dlty;] = [MFT;K(M;) ¢ BM];
Ditgg] = Dltyg] = = Dltg3] = [SFT;_).

MERAY! _ SLRRREAERN

- S, has a token in Figure 3.10.4 initially, so the INIT A macro transition

is enabled and begins execution when its first transition t, fires.

] -. (]
3 E - * 4 A . L
3 -f\ u-'. N “-MWJ .—.\h.- ‘e] e
b e WLy o
' AR e P NN .
ﬁ. ’ A-t’.\b.\nll- - R TR e Sl
b .
; o
I .
4 ;
p 4
9 .
p ...‘
W E

-

. UOLBIYISSE[D PoOYIaY1'] WRUIIXEJY Jo [PPON 1N-S ¥'T'¢ ‘314 B
3 2
. g
v. »g
w. suotjounj o “..“_
. JUBUIWIIOSIP suolauny (wjy teet M
3 Jo wnurixeus yjuewuILdsip jo - (1) Jo sanjea 4
ay) asooy) sanjea ay) put g ay) ozijelILU] : J
| b _ ueIg u

.

1

9) q Ay

4.

B L L

“ % » A
s a8 8 B8

Oy

:.-'l.'l'.l rl

:r". -l

(RN

YA]
e W'D

- PR
‘.

Fig. 3.1.5. Macro INIT A - Initialize the Values of A(1),...

A(m)

SUOIJOUN J JUBUIWILIOSI(] JO sonjeA ay) put] - ¢ S[q oo’y 91°¢ 814

2t =0y

N A B et Sl B e Bk 3

Y

Pl

T

—
o0

1, 0y 3y & By = f

Te, 8 08 1,8
A A
P

AR

S, %2 "1 %n

SUOIJOUN f JUBUIWLIASI(] JO WNWIXE]N Y3 35004 - D XVIN 01BN L1°¢ 31

1-—sse{) {0y < (v

PR T e v . .
’ AL AR R e Y I IRV I 0

A S L e e e ey A A AR R S i 2 g
R e B L A AR AR RS AR A e e IS B S ol A N b o 6 W 4 B e Al A e L

- The transition t, models the initialization of A(i) to a constant, c;
1 <i<m, with all PEs being active because |V;| =M and
K{M,) = <IM> . and the execution of the control-flow or scalar
instructions in the control unit.

- The transition t; models the event: “check if i is greater than m or
not.”

- The transition tys models a test performed with all PEs. From this
test, a mask marking is implicitly formed.

- K(M;) is marked on the graph as # which means it is data dependent.

- To make timing analyses more realistic, different time units arc

assigned to the transitions depending on the operations they represent.

The notation at each transition is “t; = time units.”

Because of the data dependent condition, an execution of this S-Net over
the sequence of transitions in the MAX C macro will not reveal the number of
tokens fired. The degree of parallelism is also data dependent. (This difficulty
of data dependence is not exclusive to S-Nets; it must be dealt with in any
modeling analysis.) In examining the model for synchronization between the
stages of S-Nets and measuring the degree of parallelism, we assume all PEs

are active,

The results of an execution of the S-Net from t; to tyz are shown in Table

" - .
L)

.

A

% A
“.

T

.

g

3.1.3. From this table, the quantitative measures of parallelism are ealculated L
.‘:\f_\‘.

as follows: TR
MEAEL LR

BRSNS

-.."A\. ‘.-h

-...':.\..\1

Sanatal

DR IS IV A DA A LA A B i e i Jiaatin ab i g

33

Table 3.1.3. Timing Analysis of SIMD S-Net

no. of time the
transition firings transition
Y n takes, ¢; & g ny*e; gi*ni*e gi*n;*e;
t M 1 0 1 M 0 M
to M 1 MIi+M M M? (1+MM
ta mM 1 0 1 mM 0 mM
ta (m—-1)M 0 0 1 0 0 0
ts (m-1)M 1 MI1+M (m-1)M (m-1)M? (1 +M)(m-1)M
te M 1 0 1 M 0 M
ty M 1 0o 1 M 0 M
ts mM 1 MI1+M mM mM? (1+M)mM
to nmM 1 M1+M amM nmM? (1+M)amM
to (n—1)mM 0 o 1 0 0 0
t (n—1)mM 1 MI1+M (o-1)mM (n-1)mM? (1+M)(n-1)mM
tie mM 1 0 1 mM 0 mM
tis mM 1 0 1 mM 0 mM
the nmM 3 M 1+M 3nmM 3nmM? (1+M)3nmM
tis {n—1)nmM 0 0 1 0 0 0
tey (n—1)nmM 3 M 1+M 3(n—1)nmM 3{(n—1}nmM? {1+M)3(n~1)nmM
L7 amM 3 M1+M 3amM 3omM? (1+M)3omM
tis (n-1)mM 0 0 1 0 0 ()
tio (n-1)mM 1 0 1 {n—1)mM 0 (n—1)mM
t mM 1 0 1 mM 0 mM
tn mM 1 0 1 mM 0 mM
too (m~1)M 0 0 1 0 0 0
tas (m—1)M 1 0o 1 {m-1)M 0 (m-1)M >
(- M 1 0 1 M 0 M BRI
tys M 1 0 1 M 0 M e
tos M 1 M 1+M M M? (1+MM
ty (m—1)M 1 MI1+M (m-1)M (m-1)M? (1 +M)(m-1)M
tes (m=2)M 0 0 1 0 0 0 e
too (m-2)M 1 M1+M (m-2M (m-2)M? (1 +M)(m-2)M o
tao M 1 0 1 M 0 M R
ty M 1 0 1 M 0 M R
te M-1 0 0 1 0 0 0
oy 1 0 0 1 0 0 0

s

»T R T e
RIS

S e o T - .« .
R Eh D I

.

.. -._\..' .l.'-._ et
SRS I YR W UL DA RS R LR SER TN N

AR

.
a'e a® o

LR

84

33
E,. = ¥ pj*e; = [4+8m+6mn +3mn% M time units

Ld

33
¥ g*njxe; = [~2+3m +5mn +3mn?|M?
=

33
Y g*njxe; = [4+8m+6mn +3mn?-2M +3mM +5mnM +3mn’M|M

|=l

There are two types of quantitative measure for concurrency.

i) The average vector parallelism h only accounts for the concurrency of
processing elements; it does not consider the overlap of array and
scalar or control-flow instructions.

33
2 g.*n.*e.
- _ |-2+3m+5mn +3mn?M?

h=
Ecot [4+48m +6mn +3mn?M

Typical values for a remote sensing application are n=4, m=16,
M=1024. Plugging these values into the above equation, we get the
utilization of the M PEs is

h _ 1134

= = 0.883
M 1284

i.e., the utilization of the 1024 PEs is 88.3%%.

ii) The average parallelism h accounts for both concurrency of processing
elements and for the overlap of array and scalar or control-flow

instructions.

N SRINN e e . _4.-___-_ Ce e e e
S, R e T AL IR S DL IR TN T RISETUT
AW, A 'k's. LRS- - S AN R R R AT ._1.5-1- PRPLPEPL TR PV 9 xls-;.x-L.L ke foa da Aal.n

RN
. _s.’ ._s"

T Y T YN, W T T
S MR N DM A._r_._._“y_‘_‘._"._,'_n“, ot s e B
LA i R i g R 2 2 4 e 6 Ny
R i e gl e s i

85 " . "
v 5
}

33 ’)

Y
Y Bi*njxe;

>
.

LRl O
. T

‘
’

— '__"_—:—_
btot

A
»
¢

=
Ay
L 5 "-'.
(\ s, *

”
k)
e

F)

_ (4+8m+6mn+3mn* M + (~2+3m+5mn +3mn?)M?
(44+8m+6mn +3mn*)M (4+8m +6mn +3mn%)M

N

Using the typical values of m, n, and M in the above equation, the

utilization of the M PEs is A

b1 LB 08 ot
M 1024 1284 LIS
£
‘. A
f-' J

By this measure, the utilization of the 1024 PEs is 88.4%. Since 1024

‘1

processing elements are available, the overlap of the control unit with
the array processors contributes very little to the degree of
parallelism. If the number of processing elements were much less than

what we have here, the overlap of the control unit with the array

processors would be more significant.

3.1.6. Modeling a Pipeline Implementation of Maximum
Likelihood Classification
In this section, a pipeline implementation of maximum likelihood
classification will be modeled with S-Nets. Recall that there are N=M PEs

available. The PEs will be interconnected to form a set of parallel pipelines

each operating on 1ts own subimage. To enable direct comparisons, the
proposed architectures will have the same total number of identical processing

elements. The following conditions are assumed:

1. The n-dimensional mean vector and n-by-n inverse covariance

matrix of class i have been stored in PE;_;, as have the m class

[i

constants.

S "x
St
‘s W

P

2. The parallelism being exploited has each stage concurrently

(IR
.
.

(& L g gthg

performing a different step of the task on a different data item

1

(pixel).
M . . M . .
3. Assume — is an integer and that there are — pipelines. Each
m m

pipeline will process mM pixels.

4. In calculating the degree of parallelism, the overhead required for
the pipeline to reach full efficiency will be ignored, i.e., steady state

operation is assumed.

A high level description of this computation at stage i—1 is as follows:

1. initialize the value of A(i) to constant ¢;.
2. Find the value of the diseriminant function for class 1.

3. Compare the value of the discriminant function for class i with the

/ value of temp; ; received from the previous stage.
4. Set the value of temp—class; based on the comparison in step 3.
5. Transfer the pixel data, temp; and temp—class; to the next stage.
6. If there is more data, go to step 1.

7. End.

The S-Net of stage i—1 of the pipeline is shown in Figure 3.1.8. A brief

autpadid 2y Jo -1 a8e1g g'1'g S

oS
stotaadd oty twodf

._.v.—/.:ﬁ.: ele(]

—llv

¥

-y 1=l uSYS1 4=y 0~ Inx=

ATAST 14—y MANos 2ok

- s a - U A S

| “h e sh.‘.

RN I o W O A R

L Y
XAXARNY

{4 .-»c;..\ ..v.

\.f\n et

(panuyuod) g'1g 14

RN

s

9 o l-. ‘..4 ™

Ny

t—'ssepo—dwa], “

ey

~
“w
RN
2 o a

&
N

a3e1s 1xau 3y 0)
palsajsuen eiep Seru="* =% Uldwey <(1)y

S (v — (1

P W ¢

88

A

28
fass

a%a s

-.‘(

CIP
L.-L'AA..

a

-,
ot

LW LT

description for the S-Net is as follows:

i.-. \.L .'-'i

N . . . ey

- Figure 3.1.8 describes the computations of one processing element, so M
.‘-' -.-’ :~~:.

1 ‘-’\‘} .v'\

it has only scalar places. A .i-.{.
LS S

- The initial marking of the S-Net is

Ko(Sy) = (1);
Ko(S2) = KO(S3) = ... = l\'o(szzrl) = (0),

- Descriptors are:

D[tI] = D[t"l] = ... = D[‘QS] — [SFT;__];

- The token in S| indicates that this stage has received the 3-tuple data
transfer from the previous stage. Once the data have been received,

transition t; is enabled and fires.

- In most other respeets, execution proceeds as in the SIMD case.

-
N
»

o1

For calculating the degree of parallelisir, we assume the S-Net goes

through the transition tog to to,. I, is the total time units required to output

one classified pixel. The timing analysis of the execution of the S-Net from t,;

to to4 is shown in Table 3.1.4. We have X SR

0 . .
E,,. = 5n°+1in+8& time units

Since M Plis are active in parallel, the average parallelism h is (assume n = 4)

Table 3.1.4. Timing Analysis of Pipeline S-Net

no. of time the
transition firings transition t;
t; n; takes, ¢ noxe (*g:)

1{M)
(M)
i(M)
n(M)
n(M)
n(M)
O(M)

o~
£
= B = A

tg u—l n—1(\)
tg 1 (M)
tio] 1{M)
ti- n 3n{M)
tyo n? n#(M)

n*(M)
o(M)
3(n—1)n{M)

3n(M)
n(M)
n(M)
O(M)

n—1(M)
1(M)
1{M)

3 n +3(0)

-
-
=
mat
=2
=1
4 o e e O o e 0 W O e e W e e O e e e e

Y
’

r

AT A S

y * S e .
AT AR AR
'. ‘ ‘.<"‘ "'l-|A1 'l _' ..

s
Ay iy

Ay
M

[s

E

. ”’
. l' &
.].

o
o4,
PSRN

»

;" AN
. ﬁ' PP
, Wt e e
L

.. .
LaP#+ . .

. ot

.4 ot s

< -
Y .
s " a
A
TL
-~
e
'.-'..‘
.
I~'~‘
FRS N

AD-A167 347 ING: MODELING 2

DISTRIBUTED COMPUTING FOR sxm PROCESS
OF ASYNCHRONOUS P

NC| US PAR. . (U UIIV LﬂFlWETTE II
SCHOOL OF ELECTRICAL ENIINEERINI GLINE
UNCLASSIFIED TR-EE-84-29 AR0-18798. 17-EL-APP 9/2

AL AL AL T AT S AT R L e I T R N Y IS I a0 A E A S

s

1 Agld e S R R SRS T

~
Cy

=

22 s

EEEE
K

E:'FEFEEEE
==

i
s

I

B

MICROCOM CHART

- . = . -« - . -
. ._'a'.~‘.-_‘-'.".'4‘.h '{ . _b' - - _.'-
PRV VI YR VG 1 & R R TS NG YA U A S AT SR

el e, . et
RIS . LI S e

91

24
N nxepeg; o
= _ 1=l ~ oo +5)M+(n+3)0 _ 125 M
By 5n°+1In+8 132

The utilization of the M PExs is

?

h 12
— = = 0917
Y ES ‘

-

Thus, the utilization of the 1024 PEs is 94.7°¢.

The total time units required to classify one image for the SIMD and

pipeline architectures are as follows. For SIMD,
Temp = 1+ &m + 6mn + 3mn*] M = 1.315 x 10® time units
For pipeline,

1 = [5n® + 11n + 8)mM = 2.163 x 10° time units

pipeline
Since Tpipeiine > Tsimp. it has been shown that the pipeline requires more time
to classify an image, even though the utilization of the PEs is greater. The
reason, of course, is that for the pipeline the overhead resulting from the
parallelism is greater. The pipeline could be made faster if the speed of the
individual PLis could be increased through taking advantage of their much

more specialized tasks and interconnections.

3.2. SIMD vs. MIMD

In the previous section, the description of SIMD processors is discussed
using a graphic representation called S-Nets which is an extension of Petri nets.
Several performance measures such as Average Veetor Parallelism and Average
Parallelism were described by which to evaluate the performance of SIMD

processors.

- . I N AL S e e e e LT e T e e e Lt e e e
b T I AT LIPS 10 T P N LR S ST SYV R UEYNTTRTYREUAC R . S JRCI R LR A

..".\ CoT .

l-“\:'-: . ._1

) “v..-h‘>>|>..‘

1) -‘ ,',.‘i 4
~#0 s

et B

RNy TR

92

In this section, the comparison between execution times of both SIMD and
MIMD processors is discussed. When a particular algorithm such as the
maximum likelihood classification algorithm or the clustering algorithm is
given, it is neeessary to ask which mode of parallelism, SIMD or MIMD, will
have less execution time and better utilization of PE resources if the number of
processing elements is fixed. In order to answer such questions, this section will
analvze explicit and implicit operations [23] embedded in an algorithm and,
based on these operations, derive the total execution times for both SIMD and
MIMD modes of parallehism. In addition. the potential advantages and
disadvantages, inherent in an algorithm, of MIMD mode of parallelism will be

discussed as compared to SIMD mode of parallelism.

3.2.1. The Flow Chart and the Algorithms of the Supervised Relaxation

Operator

The flow chart of the supervised relaxation operator is shown in Fig. 3.2.1.
The algorithms in blocks A, B, and C can be executed simultaneously because
the input data in these three blocks are independent of each other, and the
algorithms are independent of results produced by each nther. The algorithms
can be implemented either in SIMD mode or in MIMD mode depending on the
algorithm eharacteristies, which will be deseribed in the following sections.
Since the algorithm in block D needs the results from blocks A, B and C to
execute its instructions, it is best that blocks A, B and O produce their results
almost at the same time, then block D only needs to wait as little time as
possible to proceed with its execution of instructions. The algorithms in blocks
A Boand € oare guite different. Therefore their complexities in terms of

execnttion time are also quite different. In order to produce the results almost

NN
“n \}.I

hi
i

P

AY

0"

L 3

L A

O
55
‘.

‘t
Veont

kd

’

'
-

%y &
g
L] 5%

v
q
»
¥
¢
£

Lo L e T R VLS v

93

Class means Images of Topographic
and past years elevation
covariance matrices values
Aspect
Initial Conditional A';Ele
probabilities probabilities L.
A B Species
' ‘ C
MIMD
Y LR
Supervised
relaxation
algorithm
D
SIMD
_J
v
Result

Fig. 3.2.1 The Flow Chart of the Supervised Relaxation Operator

Tt T L Tt et e et AT T . o T
. DR R A, S A R AL AL P el e et
2 s 3 Aol A 2 - PN - BN - .} LIPS NS A Y W S W P S e b P 3.2

R L R N P R S A SRR TR G S A Ao aras aai cr e o e el e
S - B RAAEE AR A Bhast L e e e e A _—
T AR AR A e 2 Jhe g Jhes. o

94

simultaneously and provide better utilization of PEs, it is necessary to assign
different numbers of PLs and different modes of parallelism to the
implementation of these algorithms.

The algorithm in block A is actually the maximum likelihood classification
algorithm except for the multiplication by a priori probability, P(\;), for each
class. If we assume that P(X\;) = 1/N where N is the number of classes, these
two algorithms are exaectly the same exeept for a constant factor. The
algorithm in block A caleulates the initial probability of every class for each
pixel. Since this algorithm involves the multiplication of vector and matrix,
matrix inversion, calculation of a matrix determinant, and an exponential
operation, the execution time of each pixel depends on the multichannel data
values. Especially for the exponential operation, its execution time is a
function of argument value because it is a complex operation. An exponential
operation s computed as a power series and the convergence of the power
series depends on the argument value. In SIMD mode, the control unit
broadcasts instructions to all active PEs and all active PEs execute the same
instruction on the data in their own memories. Indeed all steps are

synchronized. If this algorithm is implemented in SIMD mode, each PE

executes the instruction on a different data value. As a result, each PE has a
different execution time. Therefore, the PEs with shorter execution times have
to wait until the PE with longest execution time completes its execution. Then
the control unit can broadcast the next instruction to all PEs. The
disadvantage of using SIMD mode is that the total execution time is equal to
the sumimation of the maximum exceution times of every operation because the

execution time of the operation is data dependent. The advantages of using

BRSO RT RSP M AN (O § A

SIMD mode is that scalar instructions executed by the control unit and array

L R T
s
.

.. N
N CERE - . . ‘. —ib"~ - . . N 9
. T et e T (e RO e A e
LA I L IPICRE SN A\ o B N T T -',{

e e

Com om an a4 o

instructions executed by the PEs can be overlapped.

On the other hand, if the algorithm in block A is implemented in MIMD
mode, each PE can execute an instruction fetched from its own memory
immediately after completing the previous instruction. Therefore the total
execution time is the summation of the execution times of every operation in
the PE. If we assume that the data values are randomly distributed
throughout the PEs, the probability of getting the data with longer execution
time is the same for every PLi. With this property, the total execution times of
PEs in MIMD mode almost have the same values if the number of pixels in

each PE is large enough.

The algorithm in block B involves only the accumulative operations of
counting hoth individual and joint oceurrences, and division operations. The
execution times of these two operations are almost data independent.
Therefore, no benefit can be drawn from implementing in MIMD mode.
Furthermore, the algorithm has window-type operations and needs inter-PE
transfers. SIMD mode can offer synchronized inter-PE transfers. That is, all
active PEs can transfer data to the neighboring PEs located in the same
direction relative to the transferring PIis. Since operations are simple and
execution times are short, fewer PLis are assigned to block B when compared to
block A in order for block A and B to take same amount of time to execute.
SIMD mode is implemented to take advantage of synchronized inter-PE

transfers and simple control system.

The algorithm in block € consists of two subalgorithms. One determines
the aspect angle of the pixel. From this aspect angle, the other subalgorithm
calculates the species distribution function of the classes which are possibly to

be assigned to the pixel. The subalgorithm to determine the aspect angle has

‘y 9T

‘. " l" - g

* Ll

.
e
PO SR S WA

T TR TR TR T TR TR WAL WA W W W e T

RIS R LU S
At e at, Catasty Sae "ty

96

window type operations and needs inter-PIZ transfers. The subalgorithm to
calculate the distributing function is a neighbor-independent algorithm and
involves complicated mathematical operations. If we assume that the
distribution of each class 1s Gaussian and that the mean and variance of every
class are already known and stored in the PE's memory, the relative likelihood
of finding each class for the current pixel can be calculated plugging the
elevation value into the Gaussian distribution function. As$ a result, more PEs
are needed than in block B to speed up the process in order to synchronize the

results produced from blocks A, B, and C and feed them to block D.

The algorithm in block D is the supervised relaxation operator. It involves
operations such as addition, multiplication and division. We assume that these
operations only span a narrow range of time if the argument value varies.
Therefore this algorithm does not need to be implemented in MIMD mode.
Instead it is implemented in SIMD mode. Every instruction is synchronized

and the control system is simpler than that in MIMD mode.

3.2.2 Detailed Deseription of the Algorithm in Block ¢

The algorithm calculates the aspect angle (1] by numerically differentiating
the topographic data to produce an estimate of the gradient vector at each
pixel location. Then, the direction of the vector is used as aspect angle. The

approximate gradient at line i and column j is computed as follows {1]:

-_—

VZ =WZ; ;= Ziy)) + Tl = Zija) (3.2.1)

where
V7 is the gradient vector

Z

ij 18 the topographic elevation value at i)

T A N S A P A A R S S P U A

S e e Ban A AL o o o L
LA e s i ML Ik e A g S i a gt ad o

PR B da Ah

) .

a - .
S
-j\(' Py IA_A Al I.'- Py

97

i,j are line and column coordinates
T and T are line and column unit vectors

The aspect angle is calculated as follows [1]:

y iy = Zigyy)
(Zij 1~ Zij+1)

a = tan’! (3.2.2

where

a is the direction of slope measured clockwise from north.

The subalgorithms for both aspect angle and species distribution are
shown in Fig. 3.2.2. The subalgorithm for calculating the aspect angle of the
current pixel decides that a pixel faces either south or north. Forest species
distribution as a function of elevation and aspect in the San Juan Mountains is
shown in Figure 2.1.4 [1]. In this figure, different aspects have different forest
species distributions. That is the reason why the aspect angle is needed before
calculating the distribution value. Constant C in Fig. 3.2.2 is a threshold to
distinguish angle of south from that of north. In Fig. 3.2.2, the same
subalgorithm is used to calculate the species distribution of south facing and
north facing pixels. But the actual parameters such as m[k] and olk] which are
the mean and the standard deviation of class k are different for south facing
and north facing pixels. The constant C[k] in the subalgorithm is a

precalculated value stored in the memory.

3.2.3 Implicit Operations in the Algorithm

Some of the statements in the following two sections are quoted from [23).
The conventional complexity analysis of an algorithm gives no knowledge
about how fast an algorithm will execute for a given task of size N, Therefore

this kind of analysis gives only the order of magnitude of the time that an

B W A T T T o rww.rry

b
i calculate ¢

“ae
WA

/*Algorithm for calculating aspect angle.x/
for (i=0; i<n; i+ +) /*subimage size is nxn */
for (j=0; j<n; j+ +)
V=(eli-1]fil-2li + G/l-=20ill + 1))
a=tan"'V; /* a is the aspect angle */
if (a > C) /* pixel is south facing */
calculate ¢ /*This is a subroutine which calculates species distributionx/

else /* pixel is north facing */

/* Subroutine to calculate species distribution function of each class for pixel
of either south facing or north facing. */
(z-m@

s o(k) =Cee %% where ¢, = !
/* & k k

\/2_7;0](*/
for (k=0; k<N; k++){ /* Nis the number of classes */
temp = ~(z[i][jj-m{[k]) * (z{i][i}-m[k])/(2+a(k] * o{K]);
olk] = C[k] *exp(temp); /* ¢[k] is the distribution value for class k. */

Fig. 3.2.2. The Algorithm for Aspect Angle and Species Distribution

. e _
........
................

. . . . - “ 2w
algorithm will take for a given size N, such as “order N” or “order N=." Several

papers have given the analysis of execution time by counting the number of

2, AT

il
'

explicit operations that an algorithm will perform [24,25]. However, there are

“ets
z, &

many implicit operations neglected in the analysis such as the calculation of
the real address of index variable z[i][j], moving operands from memory into
machine registers, and moving results from machine registers back into memory
[1]. Counting only explicit operations gives only an analysis of explicit
arithmetic operations, and not the implicit operations. Often these implicit
operations can have a significant impact on the execution time of an algorithm

and therefore should not be ignored.

In Fig. 3.2.2, there are many indexed variables such as z[i}{j]. m[k] and
olk]. Let us look one example to identify implicit operations. For example, in
order to get the value of mfk] into a machine register, the base address of array
m must be found, put into a machine register, added to i, and the resulting
address used to load the value of m[k]. As another example, loading the value
of z[i][j] into a machine register requires that i be multiplied by the row size of
the z array, added to j, the result added to base address of the z arrav. and the
resulting address used to load the value of z{i][j]. Alternatively. to avoid the
multiplication, an indirection table conld he used. The method requires that i
be added to the base address of the indirection table, the resulting address used

to load the address of the ith row of array z. which is added to j to get the

R ‘. . - . . NIRRT A
T T P NP SR R DA e “'.'.'."-..'._._- e
R acava’ e acaly M a et e A A et v ia e e e T

100

address of z[i}{j]. Finally, this address is used to load the data itself. While

this method saves a multiplication, it requires an additional memory load and
space for the indirection table.

The notation Maddress] will be used to denote a memory reference to
address. The implicit operations required to access operands are summarized in

Table 3.2.1.

Before counting, in Section 3.2.1, the total number of implicit and explicit

operations in the program shown in Fig. 3.2.2, several assumptions [23] are
listed as follows: _
1. The class means and standard deviations, m[k] and o[k}, k =1,2,...,N,
have been stored in each PE.
2. Clk]= l/(\/§7—ra[k]), k =1,...,N, have been precalculated and stored in
cach PE.

3. There are not enough machine registers to hold all data of the

program shown in Fig. 3.3.2.

4. There are enough machine data registers to hold all index variables

currently in use such as i, j, and k in the program.

5. There are enough machine data registers to hold all temporary results
such as V and temp, and repeated expressions such as o[k] and a
compiler is capable of recognizing and exploiting this fact. That is,
the compiler will not generate store and re-load operations in these
situations.

6. There are enough address registers to hold the addresses of all single

variables such as V oand o, and the base addresses of array variables

such as z, m, and 7.

-
-
St M
N

SRS
“le” . - . e -
SRS AR SRS - . . T
» - L g L] . C et e . .y - - - - . . -
aladas Wt T S N T S et e e e T T T T T T e T T e T e T e S oL e
-A-_(;X;ALLLA‘-:A PRI O R TP R PR DS SR TIA, ST S e T AT ‘-'5.-. ';.‘

s ant amn g

Table 3.2.1. Implicit Operations to Access Operands [23]

z[i](j] M[M|base of z+i] +j]

To Access Notation Operations
¢ Mc] 1 memory reference
I addition
m[k] M[base of m+k]
1 memory reference

2 additions
2 memory references

Anioiell il A g Y A A e S ar e A0t S aE e s s gy m——————

r-;': N N T A Y A Y LW W T X Ve ey

7. Variables already in machine registers have no implicit operations
associated with them.

& Implicit operations include the movement of constant data and new
addresses from the instruction stream into data and address registers.
When variables are first used, their addresses are migrated from the
instruction stream to address registers. Addresses and data in

registers are discarded when no longer needed.

Usually, different algorithms spend a different portion of run time
exccuting implicit operations. Therefore the relative times needed to perform
various types of operations are important. For many processors, multiplication
and division operations fake from 10 to 50 times as long as addition or
subtraction operations. Thus if a program contains many explicit

multiplication and division operations. the effect of the implicit operations may

not be significant. On the other hand, many algorithms contain no
multiplication and division operations at all. Under these circumstances,

explicit operations alone give a very poor estimate of the total algorithm

execution time. Realizing the importance of the relative times of various
operations, a list of times, in cycles, for various operations is given in Table

3.2.2 [23]. The times given are for the Motorola MC68000, a typical modern

multiregister processor. The internal eycle time for an 8MHz MC68000 is 250

ns. All of the figures given are in Vinternal eycles” e

Toa --' -.. . ," ~ ’
s ..: o) S S .. LT T T TR T .. o e e el

A s - S A ek ks S T T o s TS e e e Ty et v T PO W e

PR SR P Laia o'a m aenatotar ety At e ',._-.L.s.‘.:_',:."_&'m.' N

L T, 4

~
“.oe T s
R R

103

Table 3.2.2. Cyecle Times of Various Operators [23]

OPERAND CYCLES SIZE

(operands in registers)
addition, subtraction, (A,S) 2 word

3 long
boolean, comparison 2 word

3 long
shift 3+shiftcount word
multiplication (M) 35 wordxword =long
division (D) 75 long/word =word
(address in a register)
load, store (R) 4 word

6 long
(immediate)
load immediate address or constant data 1 word

6 long
(operand in a register)
test and branch on condition 5
(address in a register)
subroutine call 9
save/restore n registers on the stack 4+4n
subroutine return 9
interrupt 21

IR . “ e e
- . DR N N R I “ .
kY

- - - - . . - - ~ - » - .~
o LT N T) O
SR WA v R N A W W W A, B O Sy)

e e, e, e =
1 v "

” ’ N
)

RPN gt s AL S L o s ool SR S e arel aPS o o g o

101

3.2.4. Comparison Between SIMD and MINID

Some assumptions of the processing environments of SIMD and MIMD [23]

are repeated here. For SIMD mode:

1. The control unit broadcasts the instruction stream to all active PEs
and all active PEs execute the same instruction simultaneously on the
data in their own memory. While active PEs exccute the instructions
in parallel, the control unit can do scalar instructions such as loop
counting, branching, and subroutine calls and returns. These control
unit operations are overlapped with PE operations and thus do not
contribute to the overall algorithm execution time. Since mask
operations are decoded in the control unit, PE address and general

masking operations cost nothing in the total algoiithm run time.

o

Data transfers through the interconnection aetwork are performed
simultaneously. The network transmission delay for a circuit-

switched multistage network is less than 2 eyeles. The total cost of

an inter-PE transfer is 4 +2 + 4(=10) eycles for the load-transfer-
store sequence.

3. "I any,” “if all” or “where”™ conditional steps require about 25 cycles.
Control unit and PE operations cannot be overlapped for these
statements.

For MIMD mode:
I. PEs fetech instructions from their own memory and do all
computational and control (branching) operations.

2. The data transfers through the interconnection network operate

asynchronously. Each transfer causes an interrupt at the destination

T T T Y T T T T T T T R T N T T T R T T S TN SV
; TR A A PO k RO A : AR A e S i e f fa"Rie 2l 24) Sa T e 20
[ABa i,

105

PE. The time to service the interrupt includes the time to save
registers, call the interrupt service routine, load the incoming data
from the 1/O port, store the data in an appropriate buffer, and return

to the interrupted routine.

The algorithm to calculate the aspect angle of the pixel includes window
type operations and therefore requires inter-PEl data transfers. The image to
be processed is superimposed on the PEs, which are arranged in a mesh-type
array. The image is divided among the I’Es and each PL is responsible for the
corresponding subimage. The window-type operation needs data from one or
two neighboring PLis when it processes any border pixel of its own subimage.
In SIMD mode, these data transfers are performed simultancously for all Plis
via the interconnection network. Specifically, for an nxn subimage, a total of
4n parallel transfers are needed for the algorithm to calculate an aspect angle.
From assumption 2 for SIMD mode, each parallel transfer costs 10 cycles to
complete the operation. On the other hand, in MIMD mode, each data transfer
causes an interrupt at the destination PE and this operation is carried out
asynchronously by the PE. Assuming the same size subimage, each PE causes
4n interrupts at the destination PE, and gets interrupted 4n times by other
PEs when dats are ready to be transferred. Therefore, each PE totally has 8&n

interrupts for MIMD mode. Deadlock is the situation which occurs when two

PEs interrupt each other and each waits for the other PIi to continue.

Deadlock can be prevented if the procedures below are followed [26]:

1. If a PE gets interrupted, then no other PEs can interrupt this PE. ;ﬁ

..‘
o
-.""

2. If the same PE gets interrupted simultancously by more than one PE,

one of them 1s given a higher priority.

o
" e
%My

PO T S P L PR - - -
PR i A PG A TR S S Y LR o« et e et . - .
i.'-'-‘.'..~.-.'.'-‘.‘-'.‘.’.'.'. R AR YR AR L T A, AU e et el Wt L U AL P I TR

e e e e e ma e e At a Attt o tatal Ada e la® e aialdala 2 e ea fa o i . R D) it i ntabak abnda int adadtad

-y w v
A A DA I A A e S it AR v Jaaed LEA AN e MEE oo e B gh meg. by B . o -

106

3. I PEi and PEj interrupt each other, then each PE has the capability

N e afielale a 9 AR

&8 2 8 a e 8

to grant one of the interrupts and disable the other. For example,

Lot g

PEi has the capability to detect that it interrupted PEj and that PEj

interrupted PEi. Therefore, if PEi has higher priority, PE) will grant
PEi's interrupt request and PEj will withdraw its interrupt to PEi. A
similar situation occurs if PEi interrupts PEj and PEi gets interrupted

simultaneously by PEk.

Since the loop counting operations in SIMD mode are executed by the €U
and overlapped with array instructions executed by PEs, they cost nothing in
the total algorithm run time. On the other hand, loop counting operations in
MIMD mode are executed by the PEs and not overlapped with array
instructions. For example, the “C” program instruction in Fig. 3.2.2

forl =01 < nii + +)
requires n additions and n + 1 comparisons. These operations are in the
category of loop counting operations.

There is no memory contention problem in SIMD mode since the elevation
values z[i][j] of the nxn subimage and all the parameters such as m[k] and o[k]
are stored in the corresponding memory of the PEs. PEs only fetch data from
their own memories. However, there are two alternative memory organizations
possible in MIMD mode. One is the MIMD mode with global memory which
stores the parameters such as mlk] and o[k], but the elevation values for the
subimage in each PE are stored in local PE memory. Serious memory
contention will occur when every PE tries to access m[k] and olk] to calculate
the frequency responses of all classes. The other MIMD mode uses only local
memory. In this case, all parameters and data are stored in local memory. Of

course, it requires more total memory. All PEs can access the data from their

MRS

N

[. a oo -,
. K . R R 0 . LI - . LR A c. ~

> =t A N LA N Y AU G e
FEPRI I R S NIRRT Y A LR

T e
-
Y

e

LNt L e e o o

107

own memories without memory contention. Here, we consider the MIND mode
with local memory only.

The algorithm shown in Fig. 3.2.2 requires (2 + N) subtractions, (1 + N)
divisions, 4 multiplications, 1 comparison, 1 conditional step, 1 arctangent,
and N exponential operations per pixel where N is the number of classes.

These operations are in the category of explicit operations.

Now we are in a position to enumerate the implicit operations associated
with the program shown in Fig. 3.2.2. It is found that the algorithm requires 1
operation to move the constant 2 to a data register, 9 operations to move the
addresses of variables such as V, z, a... ete. to address registers, (AN +11)
additions, and (4N +10) memory references per pixel. A memory reference is

either a memory store or a memory load operation.

The number of operations involved in executing the algorithm in SINMD,
MIMD, and serial modes are listed Table 3.2.3. The operations to move data
and addresses into data and address registers are included in immediate
operations. In SIMD mode, data transfers are via interconnection networks and
not via interrupt operations. Loop counting operations are overlapped with PE
instructions. The same situation doesn't occur in etther MIMD or serial
processor modes. In MIMD mode, data transfers are executed on demand via
interrupt operations but not through parallel transfers. In serial processor
mode, the overhead of parallelism, present in both SIMD and MIMD modes,

doesn’t exist.

In Table 3.2.3, the execution times of most operations are argument-
independent except two: the arctangent and exponential operations. In SIMD
mode, since every instruction is a lockstep operation. the PLEs with shorter

instruction execution time has to wait for completion of the PE with longest

Ve e e . <" : S

Te Y. . ~a "= . ., ., ‘Y L - - ., - N . . . D) - . . . - - -
. - - . R I - » - - 3 - et T . B M Y - e T - . - : N - =
PAAPAVET SAPSANGAP I, PETC P TS L P PR I W WARGRE - DW JAE JRETRE W DR R G PGP WRE GAP R W™y

-‘r‘tr
S
s Ay by

v’ e
A

FvyTe v e

Te WO O§F | W & &

108

Table 3.2.3. Operations in SIMD, MIMD, and Serial Processor

SIMD MIMD SERIAL

Interrupt 0 3n 0
Parallel Transfer 4n 0 0
Loop Counting:

addition 0 n®N +n(n +1) M2N +M>+M

comparison 0 n?(N+1)+(n+1)2[MIAN+1)+H(M+1)°
Implicit Operation:

addition n“(AIN+ 1) n*(AN+14) M*(4N +14)

memory reference |n*(4N +10) n*(4N +10) M2(4N +10)

immediate 10 10 10
Explicit Operation:

subtraction n3(2+N) n*(2+N) M3(2+N)

division n*(1+N) n*(1+N) M?(1+N)

multiplication n*(4N) n*(4N) M2(4N)

comparison n® n® M?

condition n® n* M?

arctangent n’ n* M?

exponential n°N n°N M3N

Mx M = image size
nx n = subimage size
N = number of classes

..............................

——n A VL I I . B ..
a N] P Y a 9 . e e o o a0 S WP . B . .t -
e - S R DAY Lad

instruction execution time. Therefore, the total algorithm run time is the
summation of the maximum execution times of every operation. The lockstep
operation mode will thereby lead to ineflicient utilization of PEs in SINMD. On
the other hand, PEs in MIMD mode can execute the next instruction
immediately after completing the current instruction. Therefore, parallelism in
MIMD mode has the potential to save execution time. The eyele times of
various operations are listed in Table 3.2.2. But there is no data available from
which to estimate the range of the execution times of either arctangent or
exponential operations. IFor most processors, multiplication and division
operations take from 10 to 50 times as long as addition or subtraction
operations. Exponential and arctangent operations are complex operations
which involve many multiplication and division operations. Therefore, a
reasonable range of execution times of these two operations are assumed in
order to carry out the comparison of the execution times of SIMD and MIMD
modes. Further, it will be assumed that the argument values are randomly
distributed throughout the whole image so that the algorithm run time is
approximately equal to the sum of the means of every operation execution time

in each PE.

The plane of execution times for SIMD mode is shown in Fig. 3.2.3 under
the assumption that the range of maximum execution times of both operations
is from 200 to 400 cycles. Other assumptions used to calculate the algorithm

execution time are that an interrupt costs 21 cycles, a parallel transfer 10

cycles, an addition 2 cycles, a comparison 2 cycles, a memory reference -4 cycles,

an immediate operand 4 cycles, a subtraction 2 cycles, a division 75 cycles, a AT
o)) RN
multiplication 35 cycles, a conditional step 25 cycles; the subimage size is DTN

n =32, the number of classes N =5, and the whole image size M =256. The z-

LIS -

l-. . .
[SaP S S - . R . .
S0 % N T e " fe e e e % .. e
V. N DU N AP AN R:-»L.M.-.l:ht':»'fh.l’fu'u-l.‘}..l'.‘:.. v

R e i R AL R At Rt i gha e St 4o AFa g B g WWWWW‘z“.‘_.T.-.ﬂ IR L O
o
e e

110

axis is execution time, the x-axis is the range of the exccution time of the
arctangent operator, and the y-axis is the range of the execution time of the
exponential operator. The range of the mean mstruction execution time 15
assumed to be from 180 to 360 cycles for both operators. The plane of the
execution time for MIMD mode is also shown in Fig. 3.2.3. If the range of the
execution time is different from \‘vhat we have assumed here, the results are
expected to be similar. The results shown in Fig. 3.2.3 only indicate the trend
of the difference of the exeeution times between SIMD and MIMD modes. This
figure shows that MIMD mode has less execution time than SIMD mode.
Although scalar operations can not overlap with array operations in MIMD
mode, the exccution time saved due to efficient utilization of PEs in MIMD

mode leads to less execution time and better utilization of PEs in MIMD mode.

3.3 Alternative Performance Criteria

Feature enhancement methods, commonly used in producing maps from
imagery data, enhance or emphasize information-bearing attributes of the data
while, ideally, suppressing other ‘‘noise” characteristics. The distinction
between ‘“‘information” and “‘noise” is highly application-dependent. For the
purpose of this ..udy, attention is focused on spectral similarity, an image
attribute which is commonly found to be useful in scene analysis. If the
imagery is black-and-white, spectral similarity reduces simply to tonal (gray-
scale) similarity. A clustering algorsthm will be described, including a parallel

implementation, which can be used to identify sets of spectrally similar pixels.

a
S

The pixels need not be spatially contiguous, but simply have the same ‘“‘color™

in a generalized sense This algorithm will be used to illustrate alternative

30O

performance eriteria for evaluating parallel (SIMD) algorsithms.

Tate. ‘-

- . - . . -‘\'\v - - » -. s - -
S A e B R SO SR D R e
. . - - - . . - - . ., .
LY PR WV VTV IR VIR I TR IR S5 T L SR R PR SAA L A A SR R R TR

Al vt i 4

v

PO afuh AL st R

Laltn ot

Sl ol o

>

X o

‘J"'

h'

{401) s9p24)
WY UOLINIIXA (B0,

C e e n m M e A s e Mme—— - ® 4 s A & SR, « ¥ ow ! ¢) _ EEEEN. o 2 S A8 P L L 4 o

R Y L

100 200

W A SAMEENe A 2 &

PRy

xecttion Time for SIMD and MIMD

Y
‘'
4

Fig. 3.2.3. Planes of |

A R P A A st it Mooty Stpiednt, 2 St 4 BL, Mivtal UL aib ML SL AL AL ¢ e Ade A At e Do s e

112

In general, the complexity of SIMD algorithms is a function of the problem
size (number of elements in the data set to be processed). machine size (number
of PEs). and the interconnection network wsed to provide communications
among the PEs. For example, an algorithm which uses N PLs to execute some

operation on an M x M image will exhibit different ““performance” for different

values of N. The obvious use of performance measures is for selecting from

alternative SIMD algorithms. For a given SIMD machine, different algorithms

for performing a particular task can be compared. The algorithm which
performs best based on the desired measurement criteria can then be chosen.
As another use for performance measures, consider the situation where the
typical values of image size M are known. Then a measure of the way in which
the machine size affects the performance of the application algorithms will be
useful in deciding how many PE's the system should have. Lastly, given a
reconfigurable system {27}, the machine size can be tailored to the problem size
for execution of a given algorithm if there exists performance criteria for
comparing different choices of machine size. The goal of this section is to study
the relationships among the various parailel configurations. In order to
demonstrate one way in which the measures can be applied, an SIMD clustering

algorithm 1s presented. In this example algorithm evaluation, both the image

size and the machine size are varied, permitting the performance of the

algorithm to be examined and compared under a variety of conditions.

. "
e, - Y
YA I O P TN) A
e e s e a g

LR TR (T
LIPS S R e N hd

. - N RS
< -..‘L PR Py S v

e . . . T S ol N A - ;

. . - . - - - - - - N Tt . hd A - -

B R A P T S T A AU AT
PV PP WP P S A S - QP AP S SR A WS IR R T S, 1o R I

B T AT ICIP L UL IR e
e et atatatatiatal alm st L L OIS Aol Ll il Dl

3.3.1 A Clustering Algorithm

Given n-dimensional vectors x, = [ajag,a,]T and
xp = [bybs,b,|T, the Euclidean distance between the vectors is defined by

" e
D = }_: (ai_bi)2
=1

Given a population of n-dimensional vectors normally distributed N(U; V)

U. are the

and a second population normally distributed N(U;, M), where U, U;

IRy
opulation means and V)., V. are the population covariance matrices, the
P A p

i’

distance between these populations is defined to be the divergence

_L N ARE PR GRS

i —] —d)
+Lie s e o]

The following clustering algorithm is based on the ISODATA algorithm of
Hall and Bzll [28]. It groups vectors in such a way as to minimize the sum-of-

squared-error (SSL):

SSE = NN)
4 h
=N IEW "
where
¢ = number o: clusters
¢; = the set of vectors belonging to the ith cluster

M, = the mean vector for the ith cluster

Intuitively the vectors are grouped as tightly as possible about their respective

cluster means.

AR Tt T ST S T T TS 2 St AN AL AE Sl Ak M4 Sa S a-a e

GO A AN o i s " -~

~

-
]
.

114

Step 1: Select ¢ arbitrary but distinct vectors to servc as initial cluster

centers, Mi, i=1,2,....c. (The user specifies the value of c.)

Step 3: Compute the mean vectors for the data assigned to each cluster.
Denote means by M, i=1.2,...c.

Step 4: If the new cluster means M; are identical with the old cluster centers
Mv go to Step 5. Otherwise set M = M. 1=1,2,...,c and return to

Step 2.

Step 5: Compute the intercluster distances (divergences) and meige indistinct

clusters (having divergences less than a prespecified threshold).

Clustering complete.

The clustering algorithm is depicted in Figure 3.3.1. On every iteration of
steps 2, 3. and 4, the reassignment and movement of cluster centers (means)

reduces the SSE. Since there is a lower limit on the SSE (it cannot be made

less than zero), the algorithm is guaranteed to terminate via step 5.

3.3.2 Parallel Implementation

Figure 3.3.2 contains a parallel implementation of the clustering algorithm
i a high-level progeamming language. The implementation is of the SIMD
tvpe. Nois the number of PEs and M x M is the image size. The PEs are

configured logically as a VN-by-V'N grid on which the M-by-M image is

: : : N
Step 2: Assign each vector in the data set to the nearest cluster center, based gy
A} . . .h\'

on Euclidean distance. A

£

. M M .
superimposed. so that each PPl holds a TN--by-ﬁ— subimage {for
convenience, 1Cis assumed that M/VN is an integer). The “local” assignment)
ioi:
e a e e .-.7,:',‘..,*.{.‘“L-..;;{‘:_.L-'.:...;..‘A'."_--‘.‘..}.L»_.. .‘.'; .1*:.‘-"-,‘ J

'i

s, ...

R T T T e, T Ty L T T T TR N e Ty L

Initialize
cluster centers

y

Assign each veetor

ta b o ate Sea 8 'l Nl BATR t b B B AA Bat ol St Bt St iy e’ Jig¥

to nearest -
cluster center

Calculate means of

new “elusters”

New means .
i ! . :\U
wlentical with

previous

Compute
separability
information

Fig. 3.3.1. A Basic Clustering Algorithm

Set cluster

centers equal

to new means

T T T D N N N S T T T T T T e e MR A A ol A A S e i

LG

/* lterative Clustering Algorithm */

/* AL PEs execute in parallel.
number(1), i=1.....¢ stores the number of pivelsin the corresponding class.
Assume all initial ¢ cluster centers are already stored in cach PE.
Let My = [1yg i, [T i= 120 ¢ be the ¢ initial cluster centers.
Let M; = [m“,m;._.....,mi"]T. i=1.2.....c be the new cluster means.
n is the number of features per pivel. N is the number of PEs and
the image size 15 My M
Assume this is a checherboard type data allocation scheme.
PEs are arranged in a VN-by-V'N array and cach PE
M M

—~——-by-—= subimage. *
VNTUTUN /

stores i

/= Initialization. Zero the means and pixel counts. */

for1«—1toc
doforj«~ Iton
domy — 0
end
number (i) « 0
end

/* Nearest neighbor assignment =/

/* Let x be the spectral measurement veetor of a pixel where x = [x,,...,x AT and
n is the no. of features per pixel.
Array pelass stores the cluster no. to which pixels belong.

m: . = mean for class i, feature j at end of iteration

1J
yehange stores the no. of pixels which change class
i 8 a

assignment from last iteration to ths iteration */

Fig. 3.3.2. Parallel Implementation of the Clustering Algorithm (continued
on following pages)

R e N T IR AP R L N A S
R A A N N R e I R N - R ST
ot e it 2ol B F] PP PRSP PV TN VWY SN DI DN DU SR SRR PR T W I D DU

A ANANL L AL S Ly G B A K LA N A AL AE AN AR LA AN i i o JAnipit it aal Aar gt st it et e Bl e SR A Bak Aufl il Iach im0k \ad

A ARA A S)

117

pchange «— 0O

M
k—0to——-1
for .LQ\/N y

do forf ~0to—=~

VN

do distance « 10000000
fori—1ttoc
do ecudist «— 0
forj— lton
do cudist « cudist + (X j=my)X j=my;)
end
il eudist < distance then class « i
distance «— eudist

end

fori—1ton
+ x.

do Melgesj <= M i

classi
end

number (class) «— number (class) + 1
if (pelass (k,{).NE. class) pchange — pchange +1
pelass (k,0) « class
end
end

/* Use recursive doubling algorithm to merge the elements in vectors M, i=1,...¢
and array number (i), 1=1.....c from each PL.
n = logaN
After merging, the results will be stored in cach PE. */

fori—Oton-1
do

DTR;, — DATA to be added

TRANSFER using Cube,

DATA «~ DATA + DTR

out

Fig. 3.3.2. (continued)

/= Compute the pereentage of class change for the whole image %/

/* Use recursive doubling algorithm to merge pchange in each PL.
After merging, the result will be stored in PI2 0. %/

o MASK X" ' X]]
DTR,, «— pchange
TRANSFER using Cube;
MASK [X* 10 X]]
pchange «— pchange + DTR_,
end
MASK[0"]
pchange «— (pchange/(M=M)) = 100

/* If pchange is less than a prespecified threshold, then the clustering
is complete. Compute the separability information (not shown here);
otherwise set Mi =M, i=1.2,..,c and
return to the beginning of this algorithm. */

/* To test if pchange is less than t or not, only PE 0 is enabled. */

if pchange <t then compute the separability
QJQ'_(: x\il — ‘\1i' i:l,g,...,(‘
> go to the beginning of this algorithm.

- Fig. 3.3.2. (continued)

.
e

Y

e

!

S A I N SPLIIPI .) =
AR SR SUCIP S P SRR N o 5 -x-\lx._: .

AR SR SR L O AN AR N o e S A e A e D E i A s g, MG dae Jur LB i S i et i S bt T B

119

of pixels to cluster centers is performed in parallel, so that cach PE contains
the result of a clustering iteration for the subimage which it holds. To
compute the new cluster means, these local results are then combined using a

form of ove;lapped recursive doubling.

The exact data allocation scheme used for this algorithm is not critical.
The only requirement is that 1/N of the image elements be assigned to each
PE.

For simplicity, we shall assume a scenario with monochrome imagery, so
that the nuraber of features per pixel (n) is 1 for this algorithm. Then on each
iteration, the distance calculation and determination of cluster membership

requires (3 additions + ¢ subtractions + (c+1) comparisons + ¢

2

multiplications) * operations for each PI. The recursive doubling

algorithm to inerge the means M;, and constants number(i), i=1,...,c in cach PE
requires 2c parallel transfers and add operations at each step. Since there are
logoN steps to merge the data, a total of 2clogyN parallel transfers and
additions is required. After merging the data, ¢ division operations are needed
to compute the new cluster centers. Using the recursive doubling algorithm to
merge pchange from ecach PE requires logoN transfers and additions, and,
2logsN masking operations. Computing the percentage of class change requires
{2 multiplications + 1 division) operations and 1 mask operation. Finally, to
test if pchange is less than a prespecified threshold t requires 1 comparison:

only PE 0 is enabled at this step.

K . . .
et At P AEPT PP PR FU. PP A S RS T AR SR - v K S S AU PR, DG ST L AL

3.3.3 Performance Analysis
For application of the performance measures to the clustering algorithm,

the following are assumed:

= time for 1 integer addition operation,

= time for 1 integer subtraction operation,

= time for | masking operation,

t = time for | integer comparison operation,

t = time for 1 integer multiplication operation,
ty = time for 1 integer division operation,

t,(N) = time for 1 parallel data transfer operation.

For simplicity in the example that follows, it will also be assumed that
t, =t =t =t,/2 =ty/2 = 2t, =t,(N)/2. The actual relationships among
these operations will be implementation dependent. Time for loading and

storing data items and for program control operations such as testing loop

indices has not been explicitly included in the analysis. The time required for
program control will be assumed negligible in comparison to the other times,
and, in general, the program control operations can be overlapped with the PE
and inter-PE transfer operations. As shown carlier, the analysis could be

modified to account for implicit operations.

The performance of the clustering algorithm will be evaluated as a
function of N for an M-by-M image. with M ranging from 2% =64 to
213 = 2192, The evaluation is limited to machines having between 2% and 2!

PEs and the number of clusters being 32.

A e At et
FANRTIL L S .

P T A T A S RN AN -
PO WO VIR UN U WS DU PR VP WA U VS v DU WS VPR v ST W WP

- = -ii' -
. D . TP UL AP S PO S e S .
PO PR PRFS FE PSP P PV T T v

- » - -
PP ERAPK, PO

The sequential algorithm to do the clustering requires M? [3 additions + ¢
subtractions + (¢+1) comparisons + ¢ multiplications] + ¢ divisions + 1
comparison. Thus, the serial execution time (one processor, M* pixels) is given
by T,(M®) = M? [3 additions + ¢ subtractions + (c+1) comparisons + ¢
multiplications] + ¢ divisions + [comparison =
M? [3et, +ost + e+ 1)xt +oxt] ety 1

The following performance eriteria applied to the clustering algorithm are

discussed in [29].

(a) Execution Time (N processors, M? pixels):

M*
Tn(M?) = N BrtatextotleF st best]+ (e F Dty H (20 + 1logyNat, + 25,

+(2c + logyN*t (N) + (1 +2log,N)*t |

The execution time can be expressed as the sum of two components,
computation iime and overhead due to parallelism. The computation time is

given by

M?
N

en(M?) = [Bxt, Fext H e+ 1)xt et]+ (e + 1)ty +t +(2c +1)logaNxt, 2+t

The overhead is given by

ON(M?) = (2¢+ Dlog,Nxt (N) +(1 + 2log,N)«t,

The serial execution time is T;(M?). Figure 3.3.3 shows the loga of the
execution time as a function of N and M under the simplifying assumptions
outlined above. The graph has been normalized to 1, = 1. For large images
(e.g.. M > 1021). it s clear that for given M the execution time deereases as N

increases. For such MUif Nois doubled, then the exeention time is decreased by

~. R S . at A e e et R el et A L, .
P S R A A S DAL IR EPRLI L I D, IR I IS . D ey DI N DY L P e Y AT & D PTGV SR YN

log s(execution time)

25.0

20.0 -{
17.5 4

15.0

3

32 clusters

[3

-t
z

=
>
=

<

—

e

—_

o

Fig. 3.3.3. Clustering Algorithm: Execution Time

approximately a factor of two. For small images, an increase in the number of
PEs has little effect on the execution time. For such M, the time required for
the recursive doubling algorithm dominates when N is large, and there is little
or no advantage to using a large machine. For each M in the range 614 to 128,
the rate at which Ty(M?) decreases (dTp(M?)/dN) also decreases as N
increases. Therefore, for practical purposes it may be appropriate to consider

dTn(M?)/dN as well as Ty(M?).

(b) Speed-Up:
Sn(M?) = T\ (M?)/Tn(M?)

Figure 3.3.4 shows the log, of the speed-up as a function of N and M, under
the simplifying assumptions. For large M, SN(M?) ~ N, i.e., the speed-up is
almost ideal for all N considered. Therefore, using Sy(M?) as the performance
criterion wouid dictate using as many PEs as are available. For small M,
Sn(M?) << N, and the choice of N has little effect on the speed-up. For
example, for M = 64, there is little advantage to using more than 2% = 512
PEs. For small M, there exists a value for N up to which increasing the
number of PLs significantly increases the speed-up, but beyond which there is
little advantage to increasing N. Thus, it appears that using a combination of
speed-up with d(speed-up)/dN (and/or a measure such as utilization or

efficiency - see below) is a more practical eriterion than speed-up alone.,

W, W W W T T e TW SNy v ey - .
LR FTONT T I YT TR At O A AR S *0 e e ™l iat Sl Sl Ae i U St A T i g B avie en SAd st on 4 s ag ot T~

log y{speedup)

124

“'00007

19,5625

11.1250 +

9.6875 4

R.2500 1

6.8125

3.9375 1

2.5000

-
-

6 7 R 9 1t 1 12 13 11

n= log 4N\

Fig. 3.3.1. Clustering Algorithm: Speedup

(¢) Efficiercy:

En(M?®) = Sy(M?)/N

= T,(M2)/(N*Tr(M?))

Figure 3.3.5 shows the efliciency for a range of values of M, under the
simplifying assumptions. As required by the definition, 0 < Ex(M?) < 1. For
all M, the eftliciency decreases as N inereases, but the rate of decrease is slower
for large M. For large M, the efficiency is high for all N considered, and the
\ choice of N does not significantly affect Ex(M?). For small M, Ex(M?) is small
for large N. The conclusion that the efliciency is poor for the choices of farge
' N and small M is consistent with the information from the exceution time
measure. From the observation that Ex(M?) is higher for large M, it can be

concluded that for a fixed N, there may be no advantage to decomposing a size

i MxM problem into smaller subproblems, even if the result can later be

recombined at low cost.

(d) Utilization:

X1
Un(M?) = 3 41 /(NTy(A)
x =0

where t, = time perform step x

P, = no. of PEs active for step x

-~
!

= no. of stepsin the N PE computation

N
(The computation time ¢y(M?) = Mo
=0

To derive the utilization requires counting the number of PEs active for each

computation step. In the stage of merging the pechange in each PE, log,N steps

B T i A Lo Len e e e 4w b o bun e Dees lhen B hue te fie B bl te Bie Ll) Ve bin Vel d e e hen hhe penc o s i i et S
- g -~
)

»

4

~JRL

YWY NS

ul

pay |

.
o

officiency

126

AM=Rg192

1

WA

~
0.575 4 20,

1.000

0.750 4

0.625 4

0.500

0.375 4

0.250 4

0.125 4

0.00 g T T Y T T T]
6 7] 10 1 i2 13 11

x

Fig. 3.3.5. Clustering \lgorithm: Elliciency

- WEEEEEL T - T T Y TEEERY Y.T.T.T4TE F ommmmmTw Y4 TS W w e

« F ¥ Ny f ¢ a v w

of recursive doubling are used. At step i, 1 < i < log,N, the number of PEs
performing the additions is N/2L Summing over the logaN steps gives N=1. In
the stage of testing whether pechange is less than t or not, only P12 0 is enabled.
For the rest of the computation operations, all N Plis are enabled. Figure
3.3.6 shows the utilization under the simplifying assumptions. In this example,

because most computation steps use all N PEs,
S t‘xPx ~ N * ('N(l“?)
Therefore, here Uy(M?2) ~ en(M3)/Tn(M?).

Efficiency is directly affected by both overhead and utilization. As one
may expect, efficiency will decrease as overhead increases and/or utilization
decreases. If, for a given set of parameters, efliciency is low, then the overhead
and utilizaticn may be examined to determine factors contributing to the low
effictency. For the clustering algorithm, both overhead and utilization cause

efficiency to decrease as N inereases.

(e) Price: The price for the clustering example is
Pn(M?) = PTy(M?) + P [N+Ppp +NxP|
where P, = cost of a unit of execution time
Ppp= cost of a PE
P, = cost of a network switch

P;

;= relates total implementation cost to

hardware costs

Assuming a single stage cube network is used, the number of switches is N.

Figure 3.3.7 shows the logy of the price under the simplifying assumptions plus

P
. T
vietets)

| BEER]

.

1.000

128

\f=x192

O.R87)H 4
0.750 1
3 0.625 4

0.500 4

utiliz:

0.375 4

0.250 4

0125 4

\\M:Q(ng

U
\I()_‘)’,

- 0.00

ave ? —'...-.

*

e
e

P

t

d
2
4

Fig. 3.3.6. Clustering Algorithm: Utilization

F'"-‘n‘."‘.' Gttt il WiC AEGACR A & SR AR PRI LR NN SR SR R e A R A A LA A AL A S AR L Sl

32.000 4

~
4

20.3

-]
v

26.750 -

24,1254

21.500 A

log ,(price)

18.875 A

16.250 4

13.625 o

4

10 (B 12 13 |
n - I(lg N

=]
-
x

Fig. 3.3.7. Clustering Algorithm: Price

N P P R R
- - 3

P - T . “ ~ -t . N
YRV WP PR T PR YT PRGOS v YL PR P ey

. .
e R ML RAE WAL L NPT S
M ISP LTPLTCIN W RIS A 13 VLTS B AR

130

the assumptions that P, =P, = 1, and Ppp, = 32x P, = 1. For small M, the

curve has a minimum in the range 28 < N < 2" Furthermore, the optimal N :-}?'_.‘_-'_1
._-I._: 7
is greater for large images than for small images. This oceurs because for large {

images, execution time continues to decrease significantly as N increases, while
for smaller images. the rate at which Ty(M?®) decreases falls off for large N.

The generalized price for the clustering algorithm, under the same
assumptions, is given by

I
at1l

a
%
a+1

PuM?) = P+ Tn(M?) + *Pi¥[N*Ppp + N*P]

where a expresses the relative importance of execution time versus system cost.
Figure 3.3.8 shows the generalized price as a function of N and a for a
1024x 1024 image. As expected, the optimal value of N shifts to the right as
execution time becomes more critical than system cost and to the left when

system cost dominates (a<1).

3.4 Parallel Architecture

From the discussion of the previous three sections, a multiprocessor system
which can be dynamically reconfigured as one or more independent
SIMD/MIMD submachines of different sizes is needed to implement the
supervised relaxation algorithm. In this section, the partitioning of the
interconnection networks, cube network and augmented data manipulator
network. is considered. Typically, when the number of processing elements in
the multiprocessor system increases, the data communications between the PEs
become more and more important. Espeeially for multiple submachines of
SIMD and MIMD modes. it is required that different submachines can

stmultancously execute their mstructions and do not interfere with each other.

I LR N B Toe - . oL .. B P

- . s Tt LTt R N .. L . P
. et LI . C TN Gl e, e e R Y
S ST S A N m T e e RN

E N N ST e T e e e T e \
o I N SR I - - PP o A PHVE DRV OSBRI N A S ST T Y WY

- y : MO CR AR A A A Skl il At A A i Al a i Sl Ml Sl Al SRS S S e g g
e - - . - - e -t - - - t. - - - - - - . - - - . . . - - - - - - - e\ A
.

131

e a

22.000 1

.'.'

20.625 - 7]

19.250 1

16.500 1

15.1251

log [{generalized price)

2 ey

l"l

13.7504

[NEAE

12,3754

11.000 T
6

4
e
r
-
-

1
x

10 I 12 13 14
n=log W\

S Fig. 3.3.8. Clustering Algorithm: Generalized Price

DA
IS N

3
<
J

GO DS DS DA A e A N A A AN Nl fadE A DRl AN A e ar A s b Asi cax SN o e Sk i st e e e e et ST g —
. RN AL - A A e A AN ArG SN T WL

132

But, they still can cooperate with each other in the results through the
interconnection network after certain stages of compntations. The routing
schemes presented below for both cube network and ADM network and hybrid
type network are quoted from [16.17.18,19]. The network adopted is so well
suited to the supervised relaxation algorithm that substantial speedup by the

multiprocessor system is expected.

3.4.1 Hybrid Network

As shown in Fig. 3.4.1, the hybrid cube network 1s an integration of two
networks. the unidirectional packet-switched cube network and the bi-
directional circuit-switched cube network. This netwerk is suitable for the
parallelism modes configured as shown in Fig. 3.2.1 because large blocks of
input data can be pipelined through the lower half network and fast data and
instruction fetches can be provided by the upper half network. The upper half
of the hybrid cube network is a PE-to-PE configuration in which the cube
network is wrapped around and connected to N Plis. There is a local memory
module assoctated with each PE. The lower half of the hybrid cube network is
a PE-to-memory configuration in which N PEs are connected on one side and
N memory modules are connected on the other side. The memory spaces in the
N memory modules shared by the N PIEs are much larger than the local
memory modules in the N PEs. The interchange boxes at the mth stage
(m = log,N) can be set to conneet to the upper half or the lower half of the
hybrid cube network by setting the interchange boxes to straight or exchange;
they each have one input port connected to a Phs.

The advantage of the Pl-to-Pli configuration is fast local memory

accesses. For SIMD mode, data are stored in the loeal memory. Therefore,

»
-«
-

-

Y
D)

-

-

e

o]
p— PE
Unidirectional —e PE,
Packet
Switched °
Cube °
Network °
PE' -—n
— PEN-I

[]

[

L J

Mem, 0
Bidirectional Mem, |
Circuit
Swi tched)
Cube L4
Network .
PEN_I i
Mem, N-1

Stage log,N

\/'—\/\/

Stages IogZN-l to 0

Fig. 3..1. Hybrid Cube Network [19]

P

| 3

TR

—w

)

|

'Y

’

L R

& .
. .

T

- Ty T g
.c .l ‘l ‘\ .. .l

L
[I

.
-
il

AMETRANA ST L AN G A o i SR AR st ang see ek o . >

T Mt e oy Ty — —ry—
RS A A DA A A A A A i T e e e B AN A W B gt 00 e)]

134

this configuration can provide fast instruction and data fetches. For the PE-
to-memory configuration, N PEs share large blocks of data stored in N memory

modules and can vary the amount of memory used by each processing element.

For the packet-switched cube network, a packet makes its way from stage
to stage. releasing links and interchange boxes immediately after using them.
It is good for MIMD mode which needs a frequently changing path through the
network when performing window-type operations. Therefore, every PE can
request data from a neighboring PE by sending a message via the
interconnection network and the requested PE can respond accordingly. As a
result, it can reduce contention incurred by sending two packets to the same
input port of the interchange box or dispatching two packets from the same
output port of the interchange box. For the circuit-switched cube network, a
complete circuit is established from input port to output port for one particular
path. It is good for SIMD mode which can provide parallel data transfers via
the interconnection network and also good for transferring large blocks of data
from the shared memory modules to PEs. Therefore, data transfers can be
pipelined through the network. Once this path is establisked, the only delay is
propagation delay.

The upper half of the hybrid cube network is an unidirectional network.
since the inputs and outputs of the network are connected to PEs, the
unidirectional network is suflicient. For the lower half of the hybrid cube
network, since large blocks of data need to be transferred between PEs and
memory modules, a bidireetional network is necessary to provide this facility.

Actually. the hybrid cube network contains N input ports, 2N output
ports and two size N generalized cube networks. It has m+1 stages labeled

from m to 0. Interchange boxes in stage m divide the network into two halves.

S
.
.

. . o T
P AT AR
Al ARS8

.
.
%
a

e 2
RO

Yty
’

A

A

%

LRI A 3
LI 20 3
U LH
ol it
- 4
AN

n

A

54
LY

..
..
x

4

?;i

"
Ve

Lo

That is, the interchange boxes can be set to conneet to either the upper half or

lower half of the network.

If the cube network is replaced by the ADM network, then the hybrid
cube network becomes the hybrid ADM network. The ADM network as more
powerful than the cube network. For the multistage cube network, there s
only one path between a particular network input and output. But for the
multistage ADM network, there are multiple paths between a given network
input and output. Thus, the hybrid ADM network can reroute the packets
through another path if the current estabhished path s broken or has busy
switching elements in it. It can perform any permutation that a multistage
cube network can perform. However, in addition to these advantages for the
hybrid ADM network, there are also additional implementation costs and

control complexity that the hybrid cube network does not have.

If the multiprocessor system with the hybrid network is used to implement
the supervised relaxation algorithm, the data inputs to the subalgorithms in
blocks A, B, and C can be stored in the memory modules first. The input data
tend to be large. Therefore, the memory modules can provide large storage
space for them and data can be retrieved on demand. After using them, results
produced can be transferred back to memory modules in order to save memory

spaces in PEs for other purposes.

3.4.2 Partitioning the Cube Network into 2 MIMDs and 1 SIND

Partitioning and routing schemes for the cube network are described in the

Appendix.

. L. _"..
N TRV IR Rt S T S o

e e e e mta S cadaata loa

. .t . . . vt TR N T R - B
et alatal alata et At ata At A et aad

RN Yl Y .
Ao e bt Lh e L0

MR 200 00 s e i e Bt a0

AL A A a8 e i 7 _'K“ll:_ A S Bt sl Sl & g 8- p

136

For simplicity, assume there are N =16 PEs. We want to partition these
PEs into 2 MIMD submachines and 1 SIMD submachine for the
implementation of the supervised relazation algorithm in this multiprocessor
system. One MIMD has 8 PEs and the other MIMD has 2 PEs. The SIMD has
4 PEs plus one PLE for the control unit. Thus a total of 15 Plis have been
used. Now, the remammg problem is how to partition the network into 2
MINMDs and one SIMD with the control unit associated with it. If the network
can be partitioned into these three independent groups, then the PEs connected
to this network are automatically partitioned into three corresponding

independent submachines.

For MIMD mode with size 8, the addresses of these 8 ports must differ in 3
bit positions. For example, if port addresses from 0 to 7 are assigned to the
MIMD machine, their addresses will all agree in only the most significant bit
position. By setting to straight the interchange boxes in stage 3 corresponding
to the input port addresses ranging from 0 to 7, one MIMD with size 8 is
formed. Similarly, for MIMD mode with size 2, the addresses of these two
must differ in 1 bit position. Let us say that port addresses, 10 and 11, form
one MIMD. Therefore, two addresses will agree in the upper 3 bit positions.
By setting to straight the interchange boxes in stages 3 2, and 1 corresponding
to these two port addresses, one independent MIMD wiih size 2 is formed. For
SIMD. if port address & is selected as the control unit and port addresses
ranging from 12 to 15 are sclected for the processing PEs, then these latter 4
addresses agree in the most significant bit position. By setting to straight the
mterchange boxes in stage 3 corresponding to port addresses from 12 to 15,
these 1 addresses form one independent group. PE & can broadcast

imstructions to these 4 by ealeulating the routing tag as follows:

.

e '_\.."‘."".
Add i

Patl
St e Nt e T s
. .

.. P
P PR . ST et

- . - " - . . - ° > ~

- . % RN ‘ AR I -

hianliot b DA S A A A At a2y

Ll .

i bl e W e o

137

R=5S @ D=8 12=1000 & 1100=0100
and
B=D;®D;=12@ 15=1100 ® 1111=0011
(the notation is defined in the Appendix). For PE 8 by setting the interchange

boxes in stage 3, 2. 1, and 0 to straight, exchange, broadeast, and broadeast, it

T

can broadcast instructions to Pls 12, 13, 11, and 15, The result is shown

Fig. 3.4.2.

Y

3.4.3 Partitioning the ADM Network into 2 MIMDs and 1 SIMD

Since the determination of routing tags can be found in {16.17], this

section only overviews the advantages of the ADM network. Most important is

the description of the partitioning of the ADM network into 2 NIMDs and 1

SIMD.

The advantages of the ADM network as deseribed before are the multiple
paths existing between a network input and output, and the additional
permutations, as compared to the cube network, which the ADM network can

perform.

The ADM network consists of N input ports, N output ports, and

m = log,N stages with N switching elements per stage. Stages are numbered

from m—1 to 0. Each switching element in stage i performs a straight

connection and the PM2I (plus-minus 2') interconnection function which is

defined as

PM,i(j) = + 2) mod N
PM . (j) = - 21) mod N
for0<j< N and 0<i<m

Therefore, each node j at stage i of the network has three output lines. But,

..........
o e 3

......
...................................
............................

IRV,

2 138
v
L_.
E
i
L
5
b
F 0 0 o[~ o
" CONTROL__ 8 | _ | 4 2 | [1
* UNIT
W) /T —\ / 2
9 5 3 3] |3
[MIMD
2 T\\/ /2 a4
| 4
10 Ws 6 5 5
h=T =<
3 A3 5 6 |
N I 7 7 7 _7J v
f P
Y 4 8 s[8 u
\\ T
12 74 RN 10 9 9
RS (AW =P
10y = {mimo
13 13 N 1 1
6 / \o 122
(73 Ny "
14 14 4] 13] I3
\ f\ — SIMD
! ' 13 14 c\--—"!
15 I5 15 151 s
STAGE 3 2 | 0

[Fig. 3.1.2 Cube Network with 2 MINDs and ¥ SIMD

. .
........ R . S B L L P T P e S
...... .o Wt .o et L, DU et e .. R
PP IR WP LTI, W, WPt A > PR VR Aol d nd ol abeadiniah ob ok ol ol ah ech

139

there are only two distinct data paths from each node in stage m-1 [17]. The
ADM network is shown in Fig. 3.0.3. The individual switching elements in
every stage can be controlled independently and routing tags are employed to
distribute control of the network among the processors to avoid the bottleneck

created by Jhe centralized control unit.

Assume there are N =16 PIs connected to the ADM network. The

network can be partitioned into one SIMD machine with size 2, one MIMD

T T 4 W RN R W W W — "

machine with size 1, and one MIND machine with size 2 as shown in Fig. 3.4.1.
For the MIMD machine of size 4, if the port addresses include 1, 5, 9, and 13,
set the corresponding switching elements in stages 0 and 1 to straight. For
MIMD machine of size 2, if this group includes ports 7 and 15, set the
corresponding switching elements in stages 0, 1, and 2 to straight. The

principle of partitioning is that the size of each subnetwork must be a power of

b
b
\
3
\
\
]
I
X
]
d

2 and the addresses of the input ports in the subnetwork of size 2% must agree
in their lower order m—s bit positions. For SIMD mode, port 11 acts as the
control unit to broadcast instructions to ports 2 and 1. The routing tag
contains two parts: {R,B} = {11001, 10001}. In [16,17], calculation of the
routing tags is described. Therefore, PE 11 sets the switching elements in
successive stages to be —23, straight, straight. 2'-type broadcast. Thus, it can
broadcast instructions to PEs 2 and 1. The 2 MIMD modes and 1 SIMD mode
in the independent subnetworks shown in Fig. 3.1.14 have the complete

interconnection capabilities of the ADM network.

The important ability of this network is that it can dynamically reroute

the message through alternate available paths to gain fault tolerance as well as

improved throughput [17].

v

- vt Y.

PR .v-.-l"”l .." - ’.._'A. B BB
e e AT I R LT .
RS RS WA PP PSP

d

Aol Bl hed Bk oo

furvrwy

R0 T it Bh o)

(el g v 2 pie g

APy

140

F

P T e e

ST TR

T e

e
L
(R g S][5 Dl ol L

‘e A S

RIS T

OUTPUT

[v |

%
[]

e

- —

STAGE

MEF

]

ADM Network [16,17]

3.

3.4

g
ig.

1

T v " laaEbe "t 4 « A 8 BEEE. 2

141

OD ka4 D+

o
Lt

[plel Tof Tof T 1 Iql T

—NMTNDONDOO—ANM T WO
i

L1t

| Il [T Ief |

HUELHEUE

IHUEEEBLN

HEELNEN

JENENREE

HENEEERERERIEEEE

O—ANMNITONDOHO—-—NM T O

CONTROL
UNIT

STACE

{15,913}
{715}

sIMD = {2,4}

MIMD

MIMD

MINIDS and 1 SIND

+)
-

ADN Network with

Fig. 3.4 1.

rv oy

Ao m s

e LT L e
Aol ol ol o

- -
LA e LT
. .
2 o

-

T Tt ot e et L R U
PV U PN VG R S W Y. P W L

PR .
Y S WA P

RN

e

et e
atadlaad.

}.. .

-
'™
-

Lada

-
-
-

3.5 Summary and Conclusions

In Section 3.1, it was shown that the maximum parallelism achieved at
this level of modeling is reduced by the nature of the algorithm and especially
by the scalar processes mvolved in the testing of the loop despite the
availability of 1024 PEs. It also was shown that the average parallelism h,
which accounts for both concurrency of processing elements and for the overlap
of array and scalar or control-flow instructions, is usually larger than the
average vector parallelism h which only accounts jor the concurrency of
processing elements and doesn’t consider the overlap of array and scalar or
control-flow instructions. I the number of processing elements is relatively
small, the overlap of the control unit with the array processors may be
significant. Otherwise, the overlap of the control unit with the array processors

contributes very little to the degree of parallelism.

An interesting result of the analyses in this section was that the total time
required to classify an image using a pipeline is greater than that using an
SIMD architeeture even though the utilization of the PEs is greater for the
pipeline. The reason is that the overhead due to unplementing the parallelism
for the pipeline is greater. The overhead includes sealar operations executed at
cach stage of the pipeline and data transfers between stages of the pipeline. In
SIMD mode. PE address and general masking operations cost nothing in the
total algorithm run time if we assume that masking operations are decoded in
the control unit. This property s also maodeled with S-Nets. Therefore, the
transition firing time 15 not ineressed to accommodate mask markings that are
not all I's. Data transfer time and data transfers through the interconnection
network can also be modeled with S-Nets, such as the data transfers in vector

sum example. Based on the S-Net maodel, system throughpat can be increased

A I .- PR L T PN - e N
B St . BRI N P S A R -
e I e LI el e

I T YL R I L T S TR Tt S L ARG,
T o R L AP D o -

A" -, c e Ce . . B LI [N S R I T I
P NN N Y S I R PR PR N LN 4 2 S, P TS SN W AR B Y

s et At
LR N

. - . DR
o W I U Ty e

)

Pajiaaiat e s dae e Jing _,.?,_-,r. Pafiarafu i i a0rar s JAOC N M e s L ML i g SHIL SV g Sl gt SN A i A b i

by maximizing the h and h measures.

Also in this section, we modeled a complex algorithm (maximum likelihood

classification) with S-Nets on SIMD and pipeline architectures. Some -

quantitative measures such as parallelism and execution time were considered ,‘p_,‘:;
in conjunction with S-Nets. Due to the availability of quantitative measures,
we can make direct comparisons between two architectures based on a given
image size and number of PEs. In general, for image processing operations
which are not window-type operations, the higher the dimensionality of the “
remote sensing data and the more classes represented in the image. the greater -
the potential benefits to be derived from SIMD implementation of the process.
Section 3.2 discussed the comparison between execution times of SIMD
and MIMD processors based on the analysis of explicit and implicit operations
embedded in an algorithm. In Scction 3.2.4 it was demonstrated that the
MIMD mode is better than SIMD mode for the algorithms which are not oo
suitable for lockstep operation. Of course. MIMD mode needs a more '-_'l'
complicated control strategy and has more complicated methods for data
transfers than SIMD mode. In SIMD mode, every step is synchronized and the
control strategy is simpler. In general, algorithms which have window-type -
operations and do not have operators whose execution times are argument-
dependent are suitable for SIMD mode becanse they can take advantage of
overlapping of scalar and array operations, parallel data transfers, synehronized
operation, and simpler control schemes without loosing the better utilization of
PE resources. Algorithms which do not have window-type operations and have
operators whose execution times are argument-dependent are suitable for

MIMD mode because they can avoid the interrupt operations for asyvnchronous

data transfers and deadlock prevention schemes, achieve better utilization of

e AR Mt A b M S S ARG A A CAL S s SE A LA A A AT AN i S aen o son s

AR i ot Mg s athi A e L s

144

PE processing power, and minimize exccution times. For algorithms which
have window-type operations and are suitable for MIMD mcde, data transfers
can be exccuted in parallel before performing any data computation or can be
executed in a more general fashion though interrupt operations provided that
the complicated control scheme of the system is available. We assume that
asynchronous data transfers through interrupt operations and control schemes

can be supported by the hardware/software.

The supervised relaxation algorithm contains several subalgorithms, some

of which have execution times that are argument-dependent. These

subalgorithms are suitable for MIMD mode in order to most efficiently utilize
the processing power of PEs and minimize execution times. On the other
hand, subalgorithms with execution times which are no. argument-dependent
are most suitable for SIMD mode in order to take advantage of the simpler
control strategy and lockstep operations. PASM [26,27], a partitionable,
reconfigurable SIMD/MIMD multimicroprocessor system, offers an interesting

environment in which to implement the supervised relaxation algorithm. It can

be conficured as one SIMD submachine and two MIMD submachines of

s s

different sizes for the earlier processing stages and later can be reconfigured as

T

an SIMD machine with maximum PEs in order to avoid a bottleneck due to a
particularly complex operation. From Table 3.2.3, it was seen that the
speedup of both SIMD and MIMD submachines will be close to (M/n)?, which is
the number of Pls, if the subimage size is large enough so that the overhead
caused by parallelism is not a dominant factor.

In Section 3.3, analysis of a representative algorithm (clustering)

emphasized system performance as a function of problem size and system size.

Although the system performances are for SIMD mode, it can be generalized to

IEERL SR N S AU AT, MO SRR TN —~—.-..r"

- S .
NBle s ki e et 00 10 Lonwier e den B A RATES DAL AT S B AR At Be e Biu- b b LA NA S DA S e Ral Rel R S S SR

145

MIMD mode as long as data transfers are executed in parallel before
performing data computation, and the computation time for MIMD mode must
take into account scalar operations such as loop counting, branching, and
subroutine calls and returns. The other processing environment of MIMD mode
is the same as that described in Section 3.2. We recall that the subalgorithms
in blocks A, B, and C as shown in Fig. 3.2.1 can be executed independently
and simultaneously because the input data and results of these three
subalgorithms are independent of each other. For systems aimed at real-time
processing, it is best that these subalgorithms produce their results almost at
the same time to provide input data for block D. Based on the “execution
time” measure, we can assign different numbers of processing elements for
subalgorithms in blocks A, B, and C to synchronize their outputs and minimize

the execution time. But by considering execution time alone, it is possible to

select the number of PEs such that the marginal improvement in performance
is very small or, conversely, such that significant improvements may be
sacrificed. The execution time does not directly address issues related to how
effectively the system resources are being used. In general the “speed-up”,
“efficiency™, and ‘‘utilization™ measures used together can achieve Dbetter
utilization of PIS resources and synchronize the outputs. By considering the
total number of PEs assigned to blocks A, B, and C as system cost and the
required execution time to synchronize the outputs as execution-time cost, the

“price” and “generalized price” measures can provide a means to choose the

number of PEs which seems to be a compromise between execution time and
system cost.
In Section 3.1, we considered two interconnection networks which can

provide the communication among the PEs in the multiprocessor system and

e At L iow o e v s o o e A e e e e e S U S o o S S

S
.
1

.

146

""a ‘o i v.'.".".“

described how these two networks can be reconfigured as 2 MIMDs and 1 SIMD

subnetworks to support the system to implement the supervised relaxation

) algorithm.

.......................................

CHAPTER 4 - CONCLUSIONS AND SUGGESTIONS

The supervised relaxation operator was demonstrated successfully as a
mechanism for combining the information from multiple ancillary data sources
with the information from spectral data and spatial context in classifying of
multispectral imagery. In Chapter 2, the method was described and the
convergence of the iterative algorithm was established. The final labeling
results from convergence of evidence, reaching consistent labeling. The key
inputs to the supervised relaxation operator are a quantitative characterization
of initial probabilities computed from the spectral data and conditional
probabilities computed from the contextual information. The initial
probabilities were obtained in the penultimate step of the maximum likelihood
classification using spectral data; the conditional probabilities were calculated
from another source of data known to be correct. The experimental results
showed that the performance of the method using spatial contextual
information was only slightly better than that obtained from the maximum
likelihood classifier; the performance with one ancillary information source was
much better than previously obtained; and the performance measure with two
ancillary information sources was still better. These results demonstrate that
the supervised relaxation algorithm is a useful technique to integrate

information from the various sources and achieve a ground cover classification

.)

e T e e e e e e s e e e e PR RN
------- P R T A e L AP s SN e o A T oI N AP L R L AL T
P IR SPRP IR WRPID I Wl A AN S ST I P S REDNIAP I DRI AT S 1 SN - i, ol acadh PRI DRI T PV SN YT W TP AL T, Dy Py |

PR AN YA s Ak daec g i iy Y

148

which is both accurate and consistent in the face of incousistencies which may

exist among the data components.

In Chapter 3, S-Nets were used to describe the maximum likelihood
algorithm implemented in SIMD and pipeline modes of parallelism. Analysis of
the S-Net models showed that the overhead incurred by the pipeline causes
longer cxecution time than SIMD mode. PI address and general mask
operations, which for SIMD are decoded in the control unit and cost nothing in
the algorithm run time, can also be modeled with S-Nets, as can the data

transfer time and data transfers through the network.

Some quantitative measures such as average parallelism and execution
time were also developed and used to make direct comparisons between two
architectures. Detailed descriptions and analyses of implicit operations, explicit
operations, loop counting operations, parallel transfers, and interrupt
operations occurring in SIMD and MIMD modes of parallelism were presented
in Section 3.2. Based on these analyses, the comparison of execution times
derived can lead to the right decision concerning which mode of parallelism,
SIMD or MIMD, is best suited to one specific algorithm. In general, algorithms
which have window-type operations and do not have operators whose execution
time are argument-dependent are suitable for SIMD mode because they can
make use of overlap of scalar and array operations, parallel data transfers,
synchronized operation, and simpler control scheme. Algorithms which do not
have window-type operations and have operators whose execution times are
argument-dependent ate best suited to MIMD mode. Even for algorithms
which have window type operations and have operators whose execution times

are argument-dependent, MIMD mode is still suitable as long as data transfers

can be executed in parallel fashion before performing data computation.

Ol
.. - 0.. ~-- P e . - A S Y - . .
o ".- - "_t R o N . .‘ . s [P A ~~ -- ‘." - " N
- At el L e T gt T e e w . . -
............ [G R) A T Nt il SIS EPRLEPAL SO IR IR .
R NN R T e VAt YW L R I S L RPTR - * .
P SRPLI - PR, I . o at e AT “-r\.l" DALY RIS N A LT) ‘:-

PN TP) - Mo Ra i RS R e R e S e e

Section 3.3 described the determination of the optimal number of processing
elements for a given image size based on measures of evaluating the
performance of algorithms for SIMD machines. An important concept is that
the number of PEs can be chosen subject to the relative importance of system
cost and execution time.

Finally, two multistage interconnection networks were described, the cube
network and ADM network, which provide the communication medium for the

multiprocessor system and can be configured to operate as subnetworks

supporting complex tasks.

The neighborhood contributions from the four nearest neighbors have been
used in the current study. For further research, parallel implementations may : » Ty
be developed to utilize neighborhood relations beyond just near neighboring '
pixels to combine the contextual information in the algorithm. Equal

weighting corstants, d;;, have been assigned to the four nearest neighbors; i.e.,

ij?
these four neighboring pixels have equal degree of influence in the
neighborhood contribution. If the weighting constants can be dynamically
adjusted to allow different neighbors to have different degrees of influence on } 3

the current pixel classification, the classification accuracy expected may be

better. Furthermore, in a more complicated cas~ in which one ancillary data

source is felt to be more accurate than another, it is possible to assign two
different weighting constants to the ancillary variables in the supervised

relaxation process.

The current modeling based on SIMD and pipeline architectures appears to

work quite well. A future challenge is to use S-Nets to model control strategies

or operating systems for various type architectures. Also, further investigations

should exploit algorithms on MIMD architectures and on MSIMD architectures

.....
,,,,,

W TRy W W

Pl I i T P gy v
RO I A e e T ﬁ:!.—V,-_"*;“;—vh-;_v‘-.v‘w;—'fw.ﬁn“‘_—'wk.“ e

150

in which SIMDs operates asynchronously. If the totai elapsed time of the S-
Net the transition sequences and the average parallelism of the S-Net can be
quantitatively determined, together with the description presented in Section
3.2, the results may provide a more reliable way to decide which architecture

model is best suited to a particular algorithm.

.o
l‘l'l _'
"y

2, \'c'l‘ .

:‘:\
X

I 3
>

-
-
-

rJ

2

r *e

.
'y

2, 8 8

PR
’

I T S DR R A I A S
' ain e Lalesrs s alade JSate ot e e e et

. LIST OF REFERENCES

1]

2l

8l

(4]

[5]

(6]

[

(8]

[9]

SRS Sadicie SN AN S ™ A i Al i e i i e i i g

151

LIST OF REFERENCES

R.M. Hoffer and staff, ‘“‘Computer-aided analysis of SKYLAB
multispectral scanner data in mountainous terrain for land use, forestry,
water resource, and geologic applications,” Tech. Rept. No. 121275,
LARS, Purdue University, 1975.

J. Richards, D. Landgrebe, and P. Swain, “A means for utilizing
ancillary information in multispectral classification,” Remote Sensing of
Environment, Vol. 12, pp. 463-477. 1982.

A Rosenfeld, R. Hummel and S. Zucker, ‘““Scene labeling by relaxation
operations,” IEEFE Trans. Syst., Man, Cybern., Vol. SMC-6, pp. 420-433,
June 1976.

B. Schachter, A. Lev, S. Zucker, and A. Rosenfeld, ‘‘An application of
relaxation methods to edge reinforcement,” IEEE Trans. Syst., Man,
Cybern., Vol. SMC-7, No. 11, pp. 813-8186, Nov. 1977.

A. Lev, 3. Zucker, and A. Rosenfeld, “Iterative enhancement of noisy
images,” IEEE Trans. Syst., Man, and Cybern., Vol. SMC-7, No. 6, pp.
435-412, June 1977.

A. Rosenfeld, “Iterative methods in image analysis,” Proc. 1978 IEEE
Conf. Pattern Recognition and Image Processing, pp. 181-187, Jan. 1978.

S. Zucker and J. Mohammed, ‘“Analysis of probabilities relaxation
labeling processes,” Proc. 1978 IEEF, Conf. Pattern Recognition and
Image Processing, pp. 307-312, May 1978.

S. Zucker, E. Krishnamurthy, and R. Haas, ‘“Relaxation processes for
scene labeling: convergence, speed, and stability,” IEEE Trans. Syst.,
Man, C'ybern., Vol. SMC-8, No. 1, pp. 41-48, Jan. 1978.

R. Hummel an S. Zucker, “On the foundations of relaxation labeling
processes,” Proc. 1980 IEEE Conf. Pattern Recognition, pp. 50-53,
March 1980.

bt

- S
152
[10} S. Peleg and A. Rosenfeld, “Determining compatibility coeflicients for -
. curve enhancement relaxation processes,” IEEE Trans. Syst., Man,
Cybern., Vol. SMC-8, No. 7, pp. 548-555, July 1978.
- [11] 1. Yamamoto, “A method of deriving compatibility coefficients for
A relaxation operators,” Computer Graphics and Image Processing, Vol. 10,
: pp- 256-271, 1979.
[12] J. Richards, D. Landgrebe, and P. Swain, ‘‘Pixel labeling by supervised
probabilistic relaxation,” IEEE Trans. Pattern Analy. and Machine
Intel., Vol. PAMI-3, No. 2, pp. 188-191, March 1981,
[13] R.A. Hummel and S.W. Zucker, “On the foundations of relaxation S
labeling processes,” IEEE Trans. PAMI, Vol. PAMI-5, No. 3, pp. 267- “'f“-'“
287, May 1983. PrartP
G
2 [14] A.J. Krygiel, “Synchronous nets for single instruction stream - multiple PRI
. data strcam computers,” D.Se. dissertation, Sever Institute of]
Technology, Washington University, St. Louis, MO, May 1980. RN
[15) A. J. Krygiel, “Synchronous nets for single instruction stream - multiple -f'_.-!,jf-::.-
data stream computers,” Proc. 1981 Int'l. Conf. Parallel Processing, RS
Aug. 1981, pp. 266-273.
[16) R.J. McMillen, H.J. Sicgel, “Routing schemes for the augmented data }
- manipulator network in an MIMD system,” [EEE Trans. Compt., Vol. m,_*
: C-31, pp. 1202-1214, Dec. 1982. R
a [17] H.J. Siegel and R.J. McMillen, “Using the augmented data manipulator
: network in PASM,” Computer, Vol. 14, No. 2, pp. 25-33, Feb. 1981.
(18] H.J. Siegel and R.J. McMillen, “The multistagz cube: A versatile g
- interconnection network,” Computer, Vol. 14, No. 12, pp. 65-76, Dec. -
-~ 1931.
- me)
; [19] R.J. McMillen and H.J. Siegel, “The hybrid cube network,” IEEE Proc. SRR
of the Distri. Data Acquis.,, Compu., and Control Sym., pp. 11-22, Dec. . T
1980. S
: [20] J. Richards, D. Landgrebe, and P. Swain, “On the accuracy of pixel]
‘ relaxation labeling,” ILEE Trans. Syst., Man, and Cybern., Vol. SMC- e
i 11. No. 1, pp. 303-309, April 1981. s .f:J
X RS
- [21] P.H. Swain, “Fundamentals of pattern recognition in remote sensing,” in NS
N Remote Sensing: The Quantitative Approach, P. H. Swain and S. M. RO
N Davis, I2ds., McGraw-Hill, New York, 1978. DR
~ '._-:..:‘._T.
5 B
: g

..........
..........................

aw ;oo
.

!

3 [22)
23
| 24
;." 125]
F

[26]

[27]

28]

[29]

[30]

L.J. Siegel, H.J. Siegel, P.H. Swain, G.B. Adams IIl. A.E. Feather, G.M.
Lin, and M.R. Warpenburg, ‘“Parallel Image Processing/Feature
Extraction Algorithms and Architecture Emulation: Interim Report for
Fiscal 1981, TR-EE 81-35, Purdue Univ., School of Electrical
Engineering, Oct. 1981.

J.T. Kuehn, “A more accurate complexity analysis technique,” informal
communications, Sept. 1932.

L.J. Siegel, H.J. Siegel, and A.E. Feather, ‘“Parallel processing
approaches to image correlation,” IFEE Trans. Comput., Vol. C-31, pp.
208-218, Mar. 1982.

P.T. Mueller, Jr., L.J. Siegel, and I1.J. Siegel, “Parallel algorithms for
the two-dimensional FFT,” Proc. 5th Int'l. Conf. Paltern Recognition,
pp. 497-502, Dec. 1980.

D.L. Tuomenksa, G.B. Adams IIlI, H.J. Siegel, and O.R. Mitchell, “A
parallel algorithm for contour extraction: advantages and architectural
implications,” [EEE Comput. Soc. Conf. Computer Vision and Pattern
Recognition, pp. 336-314, June 1983.

H.J. Siegel, L..J. Siegel, F.C. Kemmecrer, P.T. Mueller, Jr., HE. Smalley,
Jr., and S.D. Smith, “PASM: A partitionable SIMD/MIMD system for
imag> processing and pattern recognition,” IEEE Trans. Computl., Vol.
C-30, pp. 931-947, Dec. 1981.

R.O. Duda and P.E. Hart, Pattern Classification and Scene Analysis,
Wiley, New York, 1973.

L.J. Siegel. H.J. Siegel, an P.H. Swain, “Performance measures for
evaluating algorithms for SIMD machines,” [EEE Trans. Software
Engineering, Vol. SE-8, pp. 319-331, July 1982.

K.E. Batcher, “MPP - a massively parallel processor,” Proc. 1979 Int’l
Conf. Parallel Processing, Aug. 1979, p. 219.

LA}
g

e
(] . '.
A | 23t

R
5 %

bt S it s st B A Sy Sed e M ieh Aok Aok S Bh B Ad & d o h e an

APPENDIX

Al

154

APPENDIX -
PARTITIONING AND ROUTING SCHEMES OF THE CUBE NETWORK [18]

The generalized cube network has N inputs, N outputs, and m =log,N
stages. Each interchange box can be set to one of the four legitimate
configurations shown in Fig. A.1. The m cube interchange functions are
defined as

cubey(Pp_y - - PyPg) =Py -+ - P PPy - - PyPg

where

0<i<m

P, means the complement of bit P;. Stage i of the generalized cube network
contains the cube; interconnection function, i.e., ifo lines of each box differ in

the ith bit position as shown in Fig. A.1.

The cube network can be partitioned into independent groups. The PEs
in a group must agree in m-s bits if this group has 2° PEs and m =log,N. For
example, if the cube network has N =8 inputs and outputs, it may be
partitioned into two groups: group A consists of ports 0 to 3 and group B
consists of ports 4 to 7. By setting all of the interchange boxes in stage 2 to
straight, these two groups are isolated as shown in Fig. A.2. If the interchange
boxes in the other stage are set to straight, then two independent groups other

than the one in Fig. A.2 are formed as shown in Fig. A.3 and in Fig. A4.

. -
ce -
B o
S, ~.-_..1
R
Ly
St
- -

.

»

-
v/,

L e S e Sl e it

A ARt e b e A e ek onin Sl Sl o ne | cat e b

155

F
Py
N
N

-“cvoZ-

(A ™
H lul |N
—~CV-HCO

o [>)y

(R

2
3
a
5
6
4

o [oo [1
*umf\)u
~N 0 Jo 1& (w

STAGE 2 !

STRAIGHT EXCHANGE

7

WER UPPER
BRSRDCAST BROADCAST

Fig. A.1. Generalized Cube Network and 4 Functions of interchange box

RS
DR N - - b
------------------ e N e T D e e e e T el S
------- P D B o A N P I I T T A Tt T R R NI R
2. N ey PV B U EL W VT - v LA AR SR S SN P AR PR VR VR WL v v TR i WA WA AR

Y

1L

—~c v~
~CcC V-4 C O

STAGE 2 1 0

Fig. A.2. Set Boxes in Stage 2 to Straight [18]

e e e e L gt el
Aladtafotmfon. o x. nla'

« s e
by ‘e fv e oV

LS 'u‘r i

&« e s e

A

~cC vE -

157

0 0 0 — 0
1 Al Al2 1
2 1 1 2 0
U
3 gls Bl3 3g
i

[2 4 u
U
S Als Als s T
6 3 5 5
7 B |7 B |7 7

-
STAGE 2 1 0

Fig. A.3. Set Boxes in Stage 0 to Straight [18]

158
—10

B8
2

STAGE

o~ 2 'y L I

-_—Zo D

Fig. A4. Set Boxes in Stage 1 to Straight [18]

AN AR et S et el i el e Bk Bak g A g e o4 ‘.t 4 X v
T R T T W W SOV Y I
g Aty
gt

PR
_\.}.-P,\'
T
‘&

159

Fach subnetwork has the properties of a cube network and can be further
subdivided to form smaller independent subnetworks. As shown in Fig. A.5,
the subnetwork B in Fig. A.2 is further divided to forin two independent
subnetworks C and D.

Any type ol a centralized control unit would create a bottleneck, but if

control is distributed among the processors, each is responsible for determining

its own control signals. Therefore, the purpose of using routing tags as headers
on messages is to allow network control to be distributed among the processors.
If the processors using the network are configured as an SIMD machine, their
nonbroadecasting communication needs take the form of interconnection
functions. An interconnection function is a specification of the way all of the N
input ports are connected to the N output ports. An interconnection function
is said to be admissible by the network if there are no conflicting requests for
interchange box settings. In establishing an admissible interconnection
function, routing tags are used by all active processors simultaneously. In

MIMD mode, the routing requests occur at random intervals.

I'or one-to-one connection, the routing tag, T, is calculated as T=S®D
in which S is the inpat port and D is the output port. The operator @ denotes
“exclusive or.” For example, if S=5=101 and D=3=011, then

T=S®D=101 D011 =110. The interchange box in stage i only checks T;

1

which is the ith bit of routing tag T. If T;=1, set interchange box to

exchange. If T; =0, set interchange box to straight. Fig. A.6 shows the path
established between input port 5 and output port 3. The incoming tag is also
the same as the return tag. Therefore, it can implement handshaking.

For one-to-many broadcast, the routing tag contains two parts: R contains

routing information and B contains broadcast information. R contains m bits,

7
Al
, O e, - L ~m
P . RSN ._.,_.. - - . o -
e TN e - et et % N ;) L
:1’_"’:’;’:- 'a‘:q Ly ;.' 1" f f\-‘:~.;. ‘A. :- Q';'{’ v { - 'f\ MG b“i-" . ".'-.-' LS "--;."b W .-.' w .\'. NN ““' OO, "‘ SR "“ Ca .+
a PP, AR o ol adln shaat s alst ol Al fnt ket antas .l' .. At A el e '.'\'J.')-"--“n\)-"\.‘ -.-.-1

160

2

Zza DOk

STAGE

"

P —

Fig. A.5. Subnetwork B is Divided to C and D [18]

AR
SRS AN
VA R v AWy

Aadiale e ey

alal

»

4
0

..
.
‘e
RS,

-

$-:..- "o g
L ‘_{g' A(‘_'F

)

"j"v"

WAL AN

-y

R]

161

ODF0.OF

ol m)l el ©

N
W
<
-
)

B

»

--1-.<-l
PR AR AR

Fig. A.6. Connect Input Port 5 to Output Port 3

110)

(T =101 ® 011

P e S A e e e i e e g ane e aacm AR A At I S S i A A e AR m SERA 4 s A e B e

162

so does B. For broadcasting, the destination group must be a group of size
equal to 21, In this group, there must be at most j bits that disagree among
any pair of the addresses, and m-j bit positions in which all these addresses
must agree. For example, input port S=5 =101 broadecasts messages to

output ports 2, 3, 6, and 7, in which all addresses agree in the first bit position

N (the least significant bit is the Oth bit). Then,
: R=S®D;=S®D,; =101 ®010 =111 where D, is any one of 4 destination
- addresses and B=D,; ® D, =010 ® 111 =101 where D; and D, must have
- hamming distance of 2. The interchange boxes in stage i check B; first. If
J B; =1, set interchange box to either upper broadcast or lower broadcast. If

B, =0, then check R;. If R; =0, set interchange box to straight, otherwise set
exchange. Fig. A.7 shows input port, S =35, broadcasts messages to output

ports, D =2,3,6 and 7.

OO+HA -

163

b S Rl g0 e SR

Y TRTNIET

B A Tt S IR Rk R

STAGE 2

5 Broadcasts Message to D =236, and 7

FFig. A7. S

B mpm——
e
o s e
DA

= s

.
‘.

0
.
e 2

- -
»
-

(A
* ')I..l.." o

v
[4

|

Al

R
. N

s
(]

L
2’

L B

.
a's

‘ »
5 %
»

A PN N PO A SO A A 0 Lo oo ity

avaPny

